Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Statistical Approach for Modeling the Expressiveness of Symbolic Musical Text

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14792))

  • 125 Accesses

Abstract

The application of artificial intelligence in the musical field is bringing about a rapid and radical transformation, with extraordinary potential to change the way music is created, analyzed and interpreted. This article intends to make an innovative contribution in the definition of a computational model capable of modeling the musical expressiveness of a score considered at its symbolic level (musical notation). To achieve this goal, the study used functional harmony to segment the musical score and information theory for the definition of musical dynamics: the organization of the executive intensity of the written notes respecting the stylistic and functional aspects of the musical composition. The results are encouraging because on the one hand they are very close to the executive interpretation of humans and on the other hand they show that the proposed model is “idiom-independent”, therefore capable of functioning regardless of compositional styles, and can be useful in a variety of music applications such as adaptive automatic music performance and score analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Westergaard, P., Hiller, L. A.: Review of experimental music. Composition with an electronic computer, by L. M. Isaacson. J. Music Theory, 3(2), 302–306 (1959). https://doi.org/10.2307/842857

  2. https://www.helloworldalbum.net/

  3. https://www.youtube.com/watch?v=sus3PMzL2ZA

  4. https://holly.plus/

  5. Liu, T., Ramakrishnan, B.: Bach in 2014: Music Composition with Recurrent Neural Network (2014). https://arxiv.org/abs/1412.3191

  6. Hewahi, N.M., AlSaigal, S., AlJanahi, S.: Generation of music pieces using machine learning: long short-term memory neural networks approach. Arab J. Basic Appl. Sci. 26, 397–413 (2019)

    Google Scholar 

  7. Zhou, J., Zhu, H., Wang, X.: Choir Transformer: Generating Polyphonic Music with Relative Attention on Transformer (2023). https://arxiv.org/abs/2308.02531

  8. Floridi, L.: The Ethics of Artificial Intelligence: Principles, Challenges, and Opportunities. (Oxford, 2023; online edn, Oxford Academic) (2023). https://doi.org/10.1093/oso/9780198883098.001.0001

  9. Carnovalini, F., Roddà, A.: Computational creativity and music generation systems: an introduction to the state of the art. Front. Artif. Intell. 3(14), 1–20 (2020)

    Google Scholar 

  10. Essl, K.: Algorithmic Composition. In: Collins, N., d’Escrivan, J. Cambridge Companion to Electronic Music. Cambridge University Press (2007)

    Google Scholar 

  11. Matic, D.: A genetic algorithm for composing music. Yugoslav J. Oper. Res. 20, 157–177 (2010)

    Article  MathSciNet  Google Scholar 

  12. Hui Yap, A.Y., Soong, H., Hong Tse, S.S.: Real-time evolutionary music composition using JFUGUE and genetic algorithm. In: 2021 IEEE 19th Student Conference on Research and Development (SCOReD), pp. 377–382 (2021)

    Google Scholar 

  13. Shukla, S., Banka, H.: Monophonic music composition using genetic algorithm and Bresenham’s line algorithm. Multimedia Tools Appl. 81, 26483–26503 (2022)

    Article  Google Scholar 

  14. Gupta, S., Majumdar, R., Gambhir, S.: An approach to generate music using genetic algorithm. In: 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, pp. 1–5 (2022). https://doi.org/10.1109/ICRITO56286.2022.9964579

  15. Zulić, H.: How AI can change/improve/influence music composition, performance and education: three case studies. INSAM J. Contemp. Music, Art Technol. (2019)

    Google Scholar 

  16. Zhang, F., Meng, H., Li, M., Cui, R., Liu, C.: Music emotion recognition based on chord identification. In: Meng, H., Lei, T., Li, M., Li, K., Xiong, N., Wang, L. (eds.) ICNC-FSKD 2020, vol. 88, pp. 956–963. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70665-4_103

    Chapter  Google Scholar 

  17. Zhou, X., Lerch, A.: Chord detection using deep learning. In: Proceedings of the 16th ISMIR Conference, vol. 53 (2015)

    Google Scholar 

  18. Della Ventura, M.: Human-centred artificial intelligence in sound perception and music composition. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds.) ISDA 2022, vol. 646, pp. 217–229. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27440-4_21

    Chapter  Google Scholar 

  19. Xu, Z.: Construction of intelligent recognition and learning education platform of national music genre under deep learning. Front. Psychol. 13, 843427 (2022). https://doi.org/10.3389/fpsyg.2022.843427

    Article  Google Scholar 

  20. Della Ventura, M.: Implementation of an automatic musical scores recognition system. In: Haber, P., Lampoltshammer, T., Mayr, M., Plankensteiner K. (eds.) Data Science – Analytics and Applications. Springer Vieweg, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-32182-6_8

  21. Nam, J., Choi, K., Lee, J., Chou, S.Y., Yang, Y.H., et al.: Deep learning for audio-based music classification and tagging: teaching computers to distinguish rock from bach. IEEE Signal Process. Mag. 20, 89–90 (2019). https://doi.org/10.1109/MSP.2018.2874383

    Article  Google Scholar 

  22. Muneratti Ortega, F.J.: A machine learning approach to computer modeling of musicals expression for performance learning and practice (2021). https://www.tdx.cat/bitstream/handle/10803/674200/tfjmo.pdf?sequence=1&isAllowed=y

  23. Zhang, P., et al.: A deep neural network for modeling music. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 379–386 (2015)

    Google Scholar 

  24. Marchini, M., Ramirez, R., Papiotis, P., Maestre, E.: The sense of ensemble: a machine learning approach to expressive performance modelling in string quartets. J. New Music Res. 43(3), 303–317 (2014). https://doi.org/10.1080/09298215.2014.922999

    Article  Google Scholar 

  25. Ramirez, R., Hazan, A., Maestre, E., Serra, X.: A data mining approach to expressive music performance modeling. In: Petrushin, V.A., Khan, L. (eds.) Multimedia Data Mining and Knowledge Discovery. Springer, London (2007). https://doi.org/10.1007/978-1-84628-799-2_18

  26. Arbo, A.: Entendre comme: Wittgenstein et l’esthétique musicale, Hermann, Paris 2013, pp. 224–232 (2013)

    Google Scholar 

  27. Barakat, H., Turk, O., Demiroglu, C.: Deep learning-based expressive speech synthesis: a systematic review of approaches, challenges, and resources. J Audio Speech Music Proc 2024, 11 (2024). https://doi.org/10.1186/s13636-024-00329-7

    Article  Google Scholar 

  28. de la Motte, D.: Harmonielehre. Bärenreiter (1976)

    Google Scholar 

  29. Della Ventura, M.: The influence of the rhythm with the pitch on melodic segmentation. In Proceedings of the Second Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2015), pp. 191–201. Ostrava, Czech Republic, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21206-7_17

  30. Fubini, E.: La musica: natura e storia. Einaudi, Torino (2004)

    Google Scholar 

  31. Weaver, W., Shannon, C.: The Mathematical Theory of Information. Illinois Press, Urbana (1964)

    Google Scholar 

  32. Lerdhal, F., Jackendoff, R.: A Grammatical Parallel between Music and Language. Plenum Press, New York (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Della Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ventura, M.D. (2024). A Statistical Approach for Modeling the Expressiveness of Symbolic Musical Text. In: Younas, M., Awan, I., Petcu, D., Feng, B. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2024. Lecture Notes in Computer Science, vol 14792. Springer, Cham. https://doi.org/10.1007/978-3-031-68005-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68005-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68004-5

  • Online ISBN: 978-3-031-68005-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics