Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rearrangement of Fuzzy Formal Contexts for Reducing Cost of Algorithms

  • Conference paper
  • First Online:
Conceptual Knowledge Structures (CONCEPTS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14914))

Included in the following conference series:

  • 167 Accesses

Abstract

The influence of attribute ordering on the runtime efficiency of FCA algorithms has long been a subject of conjecture, yet no prior published work has directly addressed this issue. This paper proposes a novel approach, introducing criteria for ranking attribute importance within an L-fuzzy formal context. The primary objective is to reduce the runtime of concept lattice construction algorithms by strategically reordering attributes based on these criteria.

This work has been partially funded by the State Agency of Research (AEI), the Ministerio de Ciencia, Innovación y Universidades (MCIU), the European Social Research Fund (FEDER), the Junta de Andalucía (JA), y la Universidad de Málaga (UMA) through the PhD contract FPU19/01467 (MCIU), the VALID research project (PID2022-140630NB-I00 funded by MCIN/AEI/10.13039/501100011033) and the research project PID2021-127870OB-I00 (MCIU/AEI/FEDER, UE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, S.: In-Close, a fast algorithm for computing formal concepts. In: Proceedings of the International Conference on Conceptual Structures, Moscow (2009)

    Google Scholar 

  2. Andrews, S.: Making use of empty intersections to improve the performance of CbO-type algorithms. In: Bertet, K., Borchmann, D., Cellier, P., Ferre, S. (eds.) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10308. LNAI, pp. 56–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59271-8_4

  3. Andrews, S.: A new method for inheriting canonicity test failures in close-by-one type algorithms. In: Ignatov, D.I., Nourine, L. (eds.) Proceedings of the Fourteenth International Conference on Concept Lattices and Their Applications, CLA 2018, Olomouc, Czech Republic, 12–14 June 2018. CEUR Workshop Proceedings, vol. 2123, pp. 255–266. CEUR-WS.org (2018). https://ceur-ws.org/Vol-2123/paper21.pdf

  4. Aragón, R.G., Medina, J., Ramírez-Poussa, E.: Factorizing formal contexts from closures of necessity operators. Comput. Appl. Math. 43, 1–32 (2024). https://doi.org/10.1016/j.ins.2022.05.047

  5. Bělohávek, R., De Baets, B., Outrata, J., Vychodil, V.: Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Trans. Fuzzy Syst. 18(3), 546–557 (2010). https://doi.org/10.1109/TFUZZ.2010.2041006

    Article  Google Scholar 

  6. Bělohlávek, R.: Fuzzy Relational Systems. Springer, Cham (2002). https://doi.org/10.1007/978-1-4615-0633-1

  7. Bělohlávek, R.: Algorithms for fuzzy concept lattices. In: International Conference on Recent Advances in Soft Computing, pp. 200–205 (2002)

    Google Scholar 

  8. Bělohlávek, R., Konečny, J.: Fixpoints of fuzzy closure operators via ordinary algorithms. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015676

  9. Burusco-Juandeaburre, A., Fuentes-González, R.: The study of the L-fuzzy concept lattice. Mathware Soft Comput. 1(3), 209–218 (1994)

    MathSciNet  Google Scholar 

  10. Cordero, P., Enciso, M., López Rodríguez, D., Mora, Á.: fcaR, formal concept analysis with R. R J. 14, 341–361 (2022)

    Article  Google Scholar 

  11. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B. (eds.) Formal Concept Analysis: 8th International Conference, ICFCA 2010, Agadir, Morocco, 15–18 March 2010, Proceedings 8, pp. 312–340. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-11928-6_22

  12. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences humaines 95, 5–18 (1986)

    Google Scholar 

  13. Hanika, T., Hirth, J.: Conexp-Clj - a research tool for FCA. ICFCA (Suppl.) 2378, 70–75 (2019)

    Google Scholar 

  14. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988). https://doi.org/10.1016/0020-0190(88)90065-8

  15. Krajča, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In: CLA, vol. 672, pp. 325–337. Citeseer (2010)

    Google Scholar 

  16. Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite semi-lattice. Autom. Documentation Math. Linguist. 27, 11–21 (1993)

    Google Scholar 

  17. Kuznetsov, S.O.: Interpretation on graphs and complexity characteristics of a search for specific patterns. Autom. Documentation Math. Linguist. 24(1), 37–45 (1989)

    Google Scholar 

  18. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects from an arbitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-Informatsionnye Protsessy i Sistemy (1), 17–20 (1993)

    Google Scholar 

  19. Pattison, T., Nataraja, A.: Doubly-lexical order supports standardisation and recursive partitioning of formal context. In: Dürrschnabel, D., López Rodríguez, D. (eds.) International Conference on Formal Concept Analysis, pp. 17–32. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35949-1_2

  20. R Core Team: R: A Language and Environment for Statistical Computing (2019). https://www.r-project.org/

  21. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Springer, Cham (1982). https://doi.org/10.1007/978-94-009-7798-3_15

    Chapter  Google Scholar 

  22. Yao, W., Lu, L.X.: Fuzzy Galois connections on fuzzy posets. Math. Log. Q. 55, 105–112 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ojeda-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Rodríguez, D., Ojeda-Hernández, M. (2024). Rearrangement of Fuzzy Formal Contexts for Reducing Cost of Algorithms. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67868-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67867-7

  • Online ISBN: 978-3-031-67868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics