Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparing Relational Concept Analysis and Graph-FCA on Their Common Ground

  • Conference paper
  • First Online:
Conceptual Knowledge Structures (CONCEPTS 2024)

Abstract

Relational Concept Analysis (RCA) and Graph-FCA (GCA) have been defined as Formal Concept Analysis (FCA) extensions for processing relational data and knowledge graphs respectively. Nevertheless, while their purposes and results seem similar, the data modelling and the definition of concepts are different. In this paper, we compare these two approaches on a common basis, considering only unary and binary relations for GCA and the existential quantifier for RCA. We focus on examples showing the similarities and dissimilarities between both methods, and highlighting how cycles are processed differently by RCA and GCA.

This research is supported by ANR project SmartFCA (ANR-21-CE23-0023).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The \(\bot \) concept is not considered when counting concepts in the following.

References

  1. Alam, M., Coulet, A., Napoli, A., Smaïl-Tabbone, M.: Formal concept analysis applied to transcriptomic data. In: FCA4AI (ECAI 2012) (2012)

    Google Scholar 

  2. Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Generalization effect of quantifiers in a classification based on relational concept analysis. Knowl.-Based Syst. 160, 119–135 (2018)

    Article  Google Scholar 

  3. Ferré, S.: A proposal for extending formal concept analysis to knowledge graphs. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 271–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_17

    Chapter  Google Scholar 

  4. Ferré, S., Cellier, P.: How Hierarchies of Concept Graphs Can Facilitate the Interpretation of RCA Lattices? In: CLA 2018. CEUR-WS Proc., vol. 2123 (2018)

    Google Scholar 

  5. Ferré, S., Cellier, P.: Graph-FCA: an extension of formal concept analysis to knowledge graphs. Discret. Appl. Math. 273, 81–102 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)

    Google Scholar 

  7. Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph Symmetry: Algebraic Methods and Applications, pp. 107–166. Springer (1997)

    Google Scholar 

  8. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies. Chapman and Hall/CRC (2009)

    Google Scholar 

  9. Keip, P., Ferré, S., Gutierrez, A., Huchard, M., Silvie, P., Martin, P.: Practical comparison of fca extensions to model indeterminate value of ternary data. In: CLA 2020. CEUR-WS Proc., vol. 2668, pp. 197–208 (2020)

    Google Scholar 

  10. Keip, P., et al.: Effects of input data formalisation in relational concept analysis for a data model with a ternary relation. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 191–207. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3_13

    Chapter  Google Scholar 

  11. Kötters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS-ConceptStruct 2013. LNCS (LNAI), vol. 7735, pp. 301–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35786-2_23

    Chapter  Google Scholar 

  12. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60161-9_27

    Chapter  Google Scholar 

  13. Nica, C., Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Extracting hierarchies of closed partially-ordered patterns using relational concept analysis. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 17–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40985-6_2

    Chapter  Google Scholar 

  14. Nica, C., Braud, A., Le Ber, F.: RCA-SEQ: an original approach for enhancing the analysis of sequential data based on hierarchies of multilevel closed partially-ordered patterns. Discret. Appl. Math. 273, 232–251 (2020)

    Article  MathSciNet  Google Scholar 

  15. Priss, U.: Formal concept analysis in information science. Annu. Rev. Inf. Sci. Technol. 40(1), 521–543 (2006)

    Article  Google Scholar 

  16. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67, 81–108 (2013)

    Article  MathSciNet  Google Scholar 

  17. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley Longman Publishing Co., Inc. (1984)

    Google Scholar 

  18. Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS-ConceptStruct 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027878

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Le Ber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fokou, V., Cellier, P., Dolques, X., Ferré, S., Le Ber, F. (2024). Comparing Relational Concept Analysis and Graph-FCA on Their Common Ground. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67868-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67867-7

  • Online ISBN: 978-3-031-67868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics