Abstract
Relational Concept Analysis (RCA) and Graph-FCA (GCA) have been defined as Formal Concept Analysis (FCA) extensions for processing relational data and knowledge graphs respectively. Nevertheless, while their purposes and results seem similar, the data modelling and the definition of concepts are different. In this paper, we compare these two approaches on a common basis, considering only unary and binary relations for GCA and the existential quantifier for RCA. We focus on examples showing the similarities and dissimilarities between both methods, and highlighting how cycles are processed differently by RCA and GCA.
This research is supported by ANR project SmartFCA (ANR-21-CE23-0023).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The \(\bot \) concept is not considered when counting concepts in the following.
References
Alam, M., Coulet, A., Napoli, A., Smaïl-Tabbone, M.: Formal concept analysis applied to transcriptomic data. In: FCA4AI (ECAI 2012) (2012)
Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Generalization effect of quantifiers in a classification based on relational concept analysis. Knowl.-Based Syst. 160, 119–135 (2018)
Ferré, S.: A proposal for extending formal concept analysis to knowledge graphs. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 271–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_17
Ferré, S., Cellier, P.: How Hierarchies of Concept Graphs Can Facilitate the Interpretation of RCA Lattices? In: CLA 2018. CEUR-WS Proc., vol. 2123 (2018)
Ferré, S., Cellier, P.: Graph-FCA: an extension of formal concept analysis to knowledge graphs. Discret. Appl. Math. 273, 81–102 (2020)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)
Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph Symmetry: Algebraic Methods and Applications, pp. 107–166. Springer (1997)
Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies. Chapman and Hall/CRC (2009)
Keip, P., Ferré, S., Gutierrez, A., Huchard, M., Silvie, P., Martin, P.: Practical comparison of fca extensions to model indeterminate value of ternary data. In: CLA 2020. CEUR-WS Proc., vol. 2668, pp. 197–208 (2020)
Keip, P., et al.: Effects of input data formalisation in relational concept analysis for a data model with a ternary relation. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 191–207. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3_13
Kötters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS-ConceptStruct 2013. LNCS (LNAI), vol. 7735, pp. 301–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35786-2_23
Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60161-9_27
Nica, C., Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Extracting hierarchies of closed partially-ordered patterns using relational concept analysis. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 17–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40985-6_2
Nica, C., Braud, A., Le Ber, F.: RCA-SEQ: an original approach for enhancing the analysis of sequential data based on hierarchies of multilevel closed partially-ordered patterns. Discret. Appl. Math. 273, 232–251 (2020)
Priss, U.: Formal concept analysis in information science. Annu. Rev. Inf. Sci. Technol. 40(1), 521–543 (2006)
Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67, 81–108 (2013)
Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley Longman Publishing Co., Inc. (1984)
Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS-ConceptStruct 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027878
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fokou, V., Cellier, P., Dolques, X., Ferré, S., Le Ber, F. (2024). Comparing Relational Concept Analysis and Graph-FCA on Their Common Ground. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-67868-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-67867-7
Online ISBN: 978-3-031-67868-4
eBook Packages: Computer ScienceComputer Science (R0)