Abstract
Exploring old pharmacopoeias is a promising way to find active ingredients that can be useful to design new drugs. Nevertheless, studying these texts is a laborious task for biologists. Therefore, an interdisciplinary project was undertaken: texts have been annotated to extract relevant information and represent it within a graph database. Formal Concept Analysis (FCA) and Relational Concept Analysis (RCA) have then been used to explore this database, in order to answer questions regarding remedies and their ingredients. This paper presents the data and some results obtained with FCA and RCA. It highlights the suitability of these approaches to explore these data and answer the needs of biologists.
This research is supported by ANR 21-CE23-0023 SmartFCA and CNRS MITI’80 2021 PARADISE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use the term ’formal context’ for FCA, and ’object-attribute context’ for RCA.
- 2.
- 3.
In the rest of the paper, \(\top \) and \(\bot \) concepts are not considered in the analyses.
References
Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing text with the natural language toolkit. O’Reilly Media, Inc. (2009)
Braud, A., Dolques, X., Fechter, P., Lachiche, N., Le Ber, F., Pitchon, V.: Analyzing the composition of remedies in ancient pharmacopeias with FCA. In: RealDataFCA’2021 (2021)
Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Generalization effect of quantifiers in a classification based on relational concept analysis. Knowl.-Based Syst. 160, 119–135 (2018)
Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Raïssi, C.: On mining complex sequential data by means of FCA and pattern structures. Int. J. General Syst. 45(2), 135–159 (2016)
Connelly, E., del Genio, C.I., Harrison, F.: Data mining a medieval medical text reveals patterns in ingredient choice that reflect biological activity against infectious agents. mBio 11(1) (2020)
Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Fixing generalization defects in UML use case diagrams. Fundam. Informaticae 115(4), 327–356 (2012)
El Haff, K., Antoun, W., Le Ber, F., Pitchon, V.: Reconnaissance des entités nommées pour l’analyse des pharmacopées médiévales. In: EGC 2023. RNTI, vol. E-39, pp. 329–336 (Jan 2023)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)
Hacene, M.R., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)
Hajar, R.: The air of history Part III: the golden age in Arab Islamic medicine an introduction. Heart Views 14(1), 43–46 (2013)
Kahl, O.: Sābūr Ibn Sahl’s Dispensatory in the Recension of the ‘Aḍudī Hospital. BRILL (2009). arabic edition and English translation
Keip, P., et al.: Effects of input data formalisation in relational concept analysis for a data model with a ternary relation. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 191–207. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3_13
Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1), 101–115 (2007)
Liu, X., Hong, W., Song, J., Zhang, T.: Using formal concept analysis to visualize relationships of syndromes in traditional Chinese medicine. In: Zhang, D., Sonka, M. (eds.) ICMB 2010. LNCS, vol. 6165, pp. 315–324. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13923-9_34
Mimouni, N., Fernández, M., Nazarenko, A., Bourcier, D., Salotti, S.: A relational approach for information retrieval on XML legal sources. In: Int. Conf. on Artificial Intelligence and Law (ICAIL), pp. 212–216. ACM (2013)
Moha, N., Rouane Hacene, A.M., Valtchev, P., Guéhéneuc, Y.-G.: Refactorings of design defects using relational concept analysis. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 289–304. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78137-0_21
Nica, C., Braud, A., Le Ber, F.: Exploring heterogeneous sequential data on river networks with relational concept analysis. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 152–166. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_12
Ouzerdine, A., Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Adjusting the exploration flow in relational concept analysis – an experience on a watercourse quality dataset. In: Adv. in Knowl. Dis. and Manag, pp. 175–198. Springer (2022)
Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. with Appl. 40(16), 6538–6560 (2013)
Săcărea, C., Şotropa, D., Troancă, D.: Using analogical complexes to improve human reasoning and decision making in electronic health record systems. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 9–23. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_2
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with Titanic. Data Knowl. Eng. 42(2), 189–222 (2002)
Villerd, J., Toussaint, Y., Louët, A.L.-L.: Adverse drug reaction mining in pharmacovigilance data using formal concept analysis. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 386–401. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_25
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fokou, V., El Haff, K., Braud, A., Dolques, X., Le Ber, F., Pitchon, V. (2024). Exploring Old Arabic Remedies with Formal and Relational Concept Analysis. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-67868-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-67867-7
Online ISBN: 978-3-031-67868-4
eBook Packages: Computer ScienceComputer Science (R0)