Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing

  • Chapter
  • First Online:
Digital Twin

Abstract

The engineering of digital twins for manufacturing can benefit greatly from automated or semi-automated methods, as opposed to the current manual software development methods limited to specific use cases. The manufacturing domain already holds a large amount of data and models that can be used in these engineering processes and during runtime of digital twins. Within this chapter, we show how to apply model-driven engineering methods to the development of digital twins. Specifically, we present the necessary architectural components required for the development of reusable digital twins supporting multiple purposes, as well as the data-to-model and model-to-model transformation methods that can be applied for digital twin engineering. In addition, we discuss the architecture and the runtime use of models in the digital twin, using relevant use cases from the manufacturing domain to illustrate our approach. Overall, we show that model-driven engineering approaches are transferable to engineering digital twins for manufacturing with all its advantages, such as mastering complexity and properly involving domain experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer the readers to [17, 25] for a more detailed explanation of the concepts within the conceptual model of the digital shadow.

  2. 2.

    https://www.dagstuhl.de/de/seminars/seminar-calendar/seminar-details/22362.

  3. 3.

    https://www.digitaltwinconsortium.org/initiatives/the-definition-of-a-digital-twin/.

  4. 4.

    https://azure.microsoft.com/services/iot-hub/, https://azure.microsoft.com/services/digital-twins/, and https://azure.microsoft.com/services.

  5. 5.

    https://aws.amazon.com/de/greengrass/.

  6. 6.

    https://www.ibm.com/topics/what-is-a-digital-twin.

  7. 7.

    https://siemens.mindsphere.io/en.

  8. 8.

    https://www.eclipse.org/hono/, https://www.eclipse.org/vorto/, and https://www.eclipse.org/ditto/.

  9. 9.

    http://www.aka.ms/dtdl.

  10. 10.

    https://gemoc.org/events/moddit2023.

  11. 11.

    https://edt.community/.

  12. 12.

    https://www.automationml.org.

  13. 13.

    https://www.omg.org/spec/SysML.

  14. 14.

    https://freemarker.apache.org/.

References

  1. Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeister, L., Wimmer, M., & Wortmann, A. (2022). A cross-domain systematic mapping study on software engineering for Digital Twins. Journal of Systems and Software, 193, 111361.

    Article  Google Scholar 

  2. Graessler, I., & Poehler, A. (2017). Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system. In IEEE Int. Conf. on Industrial Engineering and Engineering Management (IEEM).

    Google Scholar 

  3. Scheifele, C., Verl, A., & Riedel, O. (2019). Real-time co-simulation for the virtual commissioning of production systems. Procedia CIRP, 79, 397–402. 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

    Google Scholar 

  4. Delbrügger, T., & Rossmann, J. (2019). Representing adaptation options in experimentable digital twins of production systems. International Journal of Computer Integrated Manufacturing, 32(4–5), 352–365.

    Article  Google Scholar 

  5. Michael, J., Nachmann, I., Netz, L., Rumpe, B., & Stüber, S. (2022). Generating digital twin cockpits for parameter management in the engineering of wind turbines. In Modellierung 2022, Bonn (pp. 33–48). GI.

    Google Scholar 

  6. Bolender, T., Bürvenich, G., Dalibor, M., Rumpe, B., & Wortmann, A. (2021). Self-adaptive manufacturing with Digital Twins. In 2021 Int. Symp. on SE for Adaptive and Self-Managing Systems (SEAMS), 2021. IEEE.

    Google Scholar 

  7. Yan, K., Xu, W., Yao, B., Zhou, Z., & Pham, D. T. (2018). Digital twin-based energy modeling of industrial robots. In Asian Simulation Conference. Berlin: Springer.

    Google Scholar 

  8. Saini, G., Ashok, P., van Oort, E., & Isbell, M. R. (2018). Accelerating well construction using a digital twin demonstrated on unconventional well data in North America. In Unconventional Resources Technology Conference 2018 (pp. 3264–3276). Society of Exploration Geophysicists, American Association of Petroleum.

    Google Scholar 

  9. Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 7, 49088–49101.

    Article  Google Scholar 

  10. Xie, J., Wang, X., Yang, Z., & Hao, S. (2019). Virtual monitoring method for hydraulic supports based on digital twin theory. Mining Technology, 128(2), 77–87.

    Article  Google Scholar 

  11. Seshadri, B. R., & Krishnamurthy, T. (2017). Structural health management of damaged aircraft structures using digital twin concept. In 25th AIAA/AHS Adaptive Structures Conference (p. 1675).

    Google Scholar 

  12. Kriebel, S., Markthaler, M., Granrath, C., Richenhagen, J., & Rumpe, B. (2023). Modeling hardware and software integration by an advanced digital twin for cyber-physical systems: Applied to the automotive domain. New York: Springer International Publishing.

    Google Scholar 

  13. Völter, M., Stahl, T., Bettin, J., Haase, A., & Helsen, S. (2013). Model-driven software development: Technology, engineering, management. Wiley Software Patterns Series (1. aufl. ed.). West Sussex: Wiley.

    Google Scholar 

  14. Berardinelli, L., Mazak, A., Alt, O., Wimmer, M., & Kappel, G. (2017). Model-driven systems engineering: Principles and application in the CPPS domain (pp. 261–299). Cham: Springer International Publishing.

    Google Scholar 

  15. Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016–1022. 16th IFAC Symp. on Information Control Problems in Manufacturing (INCOM).

    Google Scholar 

  16. Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lakemeyer, G., Liebenberg, M., Michael, J., Pennekamp, J., Quix, C., Rumpe, B., van der Aalst, W., Wehrle, K., Wortmann, A., & Ziefle, M. (2022). A computer science perspective on digital transformation in production. Journal ACM Transactions on Internet of Things, 3, 1–32.

    Article  Google Scholar 

  17. Becker, F., Bibow, P., Dalibor, M., Gannouni, A., Hahn, V., Hopmann, C., Jarke, M., Koren, I., Kröger, M., Lipp, J., Maibaum, J., Michael, J., Rumpe, B., Sapel, P., Schäfer, N., Schmitz, G. J., Schuh, G., & Wortmann, A. (2021). A conceptual model for digital shadows in industry and its application. In Conceptual Modeling, ER 2021, October (pp. 271–281). Cham: Springer.

    Google Scholar 

  18. Daniel, P., Coronado, U., Lynn, R., Louhichi, W., Parto, M., Wescoat, E., & Kurfess, T. (2018). Part data integration in the shop floor digital twin: Mobile and cloud technologies to enable a manufacturing execution system. Journal of Manufacturing Systems, 48, 25–33. Special Issue on Smart Manufacturing.

    Google Scholar 

  19. Hu, L., Nguyen, N.-T., Tao, W., Leu, M. C., Liu, X. F., Shahriar, M. R., & Nahian Al Sunny, S. M. (2018). Modeling of cloud-based digital twins for smart manufacturing with mt connect. Procedia Manufacturing, 26, 1193–1203. 46th SME North American Manufacturing Research Conference, NAMRC 46, Texas.

    Google Scholar 

  20. Zambal, S., Eitzinger, C., Clarke, M., Klintworth, J., & Mechin, P.-Y. (2018). A digital twin for composite parts manufacturing: Effects of defects analysis based on manufacturing data. In IEEE 16th Int. Conf. on Ind. Informatics (INDIN), 2018.

    Google Scholar 

  21. Luo, W., Hu, T., Zhang, C., & Wei, Y. (2019). Digital twin for cnc machine tool: Modeling and using strategy. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1129–1140.

    Article  Google Scholar 

  22. Liau, Y., Lee, H., & Ryu, K. (2018). Digital twin concept for smart injection molding. IOP Conference Series: Materials Science and Engineering, 324(1), 012077.

    Article  Google Scholar 

  23. Desai, N., Ananya, S. K., Bajaj, L., Periwal, A., & Desai, S. R. (2020). Process parameter monitoring and control using digital twin. In Cyber-Physical Systems and Digital Twins (pp. 74–80). Cham: Springer.

    Chapter  Google Scholar 

  24. Gomez-Escalonilla, J., Garijo, D., Valencia, O., & Rivero, I. (2020). Development of efficient high-fidelity solutions for virtual fatigue testing. In ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. Cham: Springer.

    Google Scholar 

  25. Michael, J., Koren, I., Dimitriadis, I., Fulterer, J., Gannouni, A., Heithoff, M., Hermann, A., Hornberg, K., Kröger, M., Sapel, P., Schäfer, N., Theissen-Lipp, J., Decker, S., Hopmann, C., Jarke, M., Rumpe, B., Schmitt, R. H., & Schuh, G. (2023). A digital shadow reference model for worldwide production labs. In Internet of Production: Fundamentals, Applications and Proceedings. Cham: Springer.

    Google Scholar 

  26. Stachowiak, H. (1973). Allgemeine Modelltheorie. Cham: Springer.

    Book  Google Scholar 

  27. Dalibor, M., Michael, J., Rumpe, B., Varga, S., & Wortmann, A. (2020, October). Towards a model-driven architecture for interactive Digital Twin cockpits. In Conceptual Modeling (pp. 377–387). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  28. Bano, D., Michael, J., Rumpe, B., Varga, S., & Weske, M. (2022). Process-aware Digital Twin cockpit synthesis from event logs. Journal of Computer Languages, 70.

    Google Scholar 

  29. Heithoff, M., Hellwig, A., Michael, J., & Rumpe, B. (2023). Digital twins for sustainable software systems. In Int. Workshop on Green and Sustainable Software (GREENS 2023), Los Alamitos. IEEE.

    Google Scholar 

  30. Caesar, B., Jansen, N., Weigand, M., Ramonat, M., Gundlach, C. S., Fay, A., & Rumpe, B. (2022). Extracting functional machine knowledge from STEP files for digital twins. In IEEE 27th Int. Conf. on Emerging Technologies and Factory Automation (ETFA), September. IEEE.

    Google Scholar 

  31. Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Kahlen, J., Flumerfelt, S., Alves, A. (Eds), Transdisciplinary perspectives on complex systems: New findings and approaches (pp. 85–113). Springer. https://doi.org/10.1007/978-3-319-38756-7_4

    Google Scholar 

  32. ISO/DIS 23247-1. (2020). Automation systems and integration—Digital twin framework for manufacturing—Part 1: Overview and general principles.

    Google Scholar 

  33. Lehner, D., Pfeiffer, J., Tinsel, E.-F., Strljic, M. M., Sint, S., Vierhauser, M., Wortmann, A., & Wimmer, M. (2022). Digital twin platforms: Requirements, capabilities, and future prospects. IEEE Software, 39(2), 53–61.

    Article  Google Scholar 

  34. Kirchhof, J. C., Michael, J., Rumpe, B., Varga, S., & Wortmann, A. (2020). Model-driven Digital Twin construction: Synthesizing the integration of cyber-physical systems with their information systems. In 23rd ACM/IEEE Int. Conf. on Model Driven Engineering Languages and Systems, October 2020 (pp. 90–101). ACM.

    Google Scholar 

  35. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. White Paper, 1(2014), 1–7.

    Google Scholar 

  36. Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. C. (2018). Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 67(1), 169–172.

    Article  Google Scholar 

  37. McKee, D. (2023). Platform stack architectural framework: An introductory guide - A Digital Twin Consortium White Paper. Technical report, Digital Twin Consortium.

    Google Scholar 

  38. Schweichhart, K. (2016). Reference architectural model Industrie 4.0 (RAMI 4.0)-An introduction. Publikationen der Plattform Industrie, 4(0), 1–32.

    Google Scholar 

  39. Bangemann, T., Riedl, M., Thron, M., & Diedrich, C. (2016). Integration of classical components into industrial cyber–physical systems. Proceedings of the IEEE, 104(5), 947–959.

    Article  Google Scholar 

  40. Bader, S. R., & Maleshkova, M. (2019). The semantic asset administration shell. In Semantic Systems. The Power of AI and Knowledge Graphs: 15th International Conference (SEMANTiCS) (pp. 159–174). Berlin: Springer.

    Google Scholar 

  41. Automation Systems and Integration—Digital twin framework for manufacturing — Part 2: Reference architecture. Standard, International Organization for Standardization, Geneva, 2021.

    Google Scholar 

  42. Minerva, R., Lee, G. M., & Crespi, N. (2020). Digital twin in the iot context: A survey on technical features, scenarios, and architectural models. Proceedings of the IEEE, 108(10), 1785–1824.

    Article  Google Scholar 

  43. Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Jamal Deen, M. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 7, 49088–49101.

    Article  Google Scholar 

  44. Kovacs, E., & Mori, K. (2023). Digital twin architecture – An introduction (pp. 125–151). Cham: Springer.

    Google Scholar 

  45. Combemale, B., France, R., Jézéquel, J.-M., Rumpe, B., Steel, J., & Vojtisek, D. (2016). Engineering modeling languages. London: Chapman & Hall.

    Book  Google Scholar 

  46. Abouzahra, A., Sabraoui, A., & Afdel, K. (2020). Model composition in model driven engineering: A systematic literature review. Information and Software Technology, 125, 106316.

    Article  Google Scholar 

  47. Butting, A., Michael, J., & Rumpe, B. (2022). Language composition via kind-typed symbol tables. Journal of Object Technology, 21, 4, 1–13.

    Article  Google Scholar 

  48. Pfeiffer, J., Rumpe, B., Schmalzing, D., & Wortmann, A. (2023). Composition operators for modeling languages: A literature review. Journal of Computer Languages, 76, 101226.

    Article  Google Scholar 

  49. Dalibor, M., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J., Rumpe, B., Varga, S., & Wortmann, A. (2022). Generating customized low-code development platforms for Digital Twins. Journal of Computer Languages, 70, 101117.

    Article  Google Scholar 

  50. Lehner, D., Sint, S., Vierhauser, M., Narzt, W., & Wimmer, M. (2021). AML4DT: A model-driven framework for developing and maintaining Digital Twins with automationML. In 26th IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA ).

    Google Scholar 

  51. Fend, A., & Bork, D. (2022). Cpsaml: A language and code generation framework for digital twin based monitoring of mobile cyber-physical systems. In Int. Conf. on Model Driven Engineering Languages and Systems: Comp. (pp. 649–658). New York: ACM.

    Google Scholar 

  52. Muñoz, P. (2022). Measuring the fidelity of digital twin systems. In 25th Int. Conf. on Model Driven Engineering Languages and Systems: Comp., MODELS ’22 (pp. 182–188). New York: ACM.

    Google Scholar 

  53. Muñoz, P., Wimmer, M., Troya, J., & Vallecillo, A. (2022). Using trace alignments for measuring the similarity between a physical and its digital twin. In 25th Int. Conf. on Model Driven Engineering Languages and Systems: Comp. (pp. 503–510). New York: ACM.

    Google Scholar 

  54. Barat, S., Kulkarni, V., Clark, T., & Barn, B. (2022). Digital twin as risk-free experimentation aid for techno-socio-economic systems. In 25th Int. Conf. on Model Driven Engineering Languages and Systems, MODELS ’22 (pp. 66–75). New York: ACM.

    Google Scholar 

  55. Niati, A., Selma, C., Tamzalit, D., Bruneliere, H., Mebarki, N., & Cardin, O. (2020). Towards a digital twin for cyber-physical production systems: A multi-paradigm modeling approach in the postal industry. In ACM/IEEE Int. Conf. on Model Driven Engineering Languages and Systems: Comp. New York: ACM.

    Google Scholar 

  56. Macías, A., Navarro, E., Cuesta, C. E., & Zdun, U. (2023). Architecting digital twins using a domain-driven design-based approach*. In IEEE 20th Int. Conf. on Software Architecture (ICSA) (pp. 153–163).

    Google Scholar 

  57. Evans, E. (2004). Domain-driven design (1st ed.). Upper Saddle River: Addison-Wesley.

    Google Scholar 

  58. Rademacher, F., Sorgalla, J., & Sachweh, S. (2018). Challenges of domain-driven microservice design: A model-driven perspective. IEEE Software, 35(3), 36–43. IEEE.

    Google Scholar 

  59. Rademacher, F., Sachweh, S., & Zündorf, A. (2020). Deriving microservice code from underspecified domain models using DevOps-enabled modeling languages and model transformations. In 46th Euromicro Conf. on Software Engineering and Advanced Applications (SEAA) (pp. 229–236). IEEE.

    Google Scholar 

  60. Haber, A., Ringert, J. O., & Rumpe, B. (2012, February). MontiArc - Architectural modeling of interactive distributed and cyber-physical systems. Technical Report AIB-2012-03, RWTH Aachen University.

    Google Scholar 

  61. Broy, M., & Stølen, K. (2001). Specification and development of interactive systems. Focus on streams, interfaces and refinement. Heidelberg: Springer.

    Google Scholar 

  62. Ringert, J. O., & Rumpe, B. (2011). A little synopsis on streams, stream processing functions, and state-based stream processing. International Journal of Software and Informatics, 5(1–2), 29–53.

    Google Scholar 

  63. Bertram, V., Rumpe, B., & von Wenckstern, M. (2016). Encapsulation, operator overloading, and error class mechanisms in OCL. In Int. WS in OCL and Textual Modeling (OCL’16) (pp. 17–32). New York: ACM/IEEE.

    Google Scholar 

  64. Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D., Schmitz, M., & Wortmann, A. (2020). Model-driven development of a digital twin for injection molding. In Int. Conf. on Advanced Information Systems Engineering (CAiSE’20) (Vol. 12127, pp. 85–100). LNCS. Cham: Springer.

    Google Scholar 

  65. Brockhoff, T., Heithoff, M., Koren, I., Michael, J., Pfeiffer, J., Rumpe, B., Uysal, M. S., van der Aalst, W. M. P., & Wortmann, A. (2021). Process prediction with Digital Twins. In Int. Conf. on Model Driven Engineering Languages and Systems Companion (MODELS-C) (pp. 182–187), October 2021. New York: ACM/IEEE.

    Google Scholar 

  66. Michael, J., Pfeiffer, J., Rumpe, B., & Wortmann, A. (2022). Integration challenges for digital twin systems-of-systems. In 10th IEEE/ACM Int. WS on Software Engineering for Systems-of-Systems and Software Ecosystems. New York: ACM.

    Google Scholar 

  67. Huang, Y., Dhouib, S., Medinacelli, L. P., & Malenfant, J. (2022). Enabling semantic interoperability of asset administration shells through an ontology-based modeling method. In 25th Int. Conf. on Model Driven Engineering Languages and Systems: Comp., MODELS ’22 (pp. 497–502). New York: ACM.

    Google Scholar 

  68. Drave, I., Michael, J., Müller, E., Rumpe, B., & Varga, S. (2022). Model-driven engineering of process-aware information systems. Springer Nature Computer Science Journal, 3, 479.

    Google Scholar 

  69. Heithoff, M., Michael, J., & Rumpe, B. (2022, June). Enhancing digital shadows with workflows. In Modellierung 2022 Satellite Events (pp. 142–146) GI.

    Google Scholar 

  70. France, R., & Rumpe, B. (2007, May). Model-driven development of complex software: A research roadmap. Future of Software Engineering (FOSE ’07) (pp. 37–54).

    Google Scholar 

  71. Hölldobler, K., Kautz, O., & Rumpe, B. (2021, May). MontiCore language workbench and library handbook: Edition 2021. Aachener Informatik-Berichte, Software Engineering, Band 48. Aachen: Shaker Verlag.

    Google Scholar 

  72. Wirth, N. (1996). Extended Backus-Naur Form (EBNF). ISO/IEC, 14977(2996).

    Google Scholar 

  73. Butting, A., Eikermann, R., Hölldobler, K., Jansen, N., Rumpe, B., & Wortmann, A. (2020). A library of literals, expressions, types, and statements for compositional language design. Journal of Object Technology, 19(3), 3:1–16.

    Google Scholar 

  74. Drux, F., Jansen, N., & Rumpe, B. (2022). A catalog of design patterns for compositional language engineering. Journal of Object Technology, 21(4), 4:1–13 (2022)

    Google Scholar 

  75. Gray, J., & Rumpe, B. (2021). Reference models: How can we leverage them? Journal Software and Systems Modeling, 20(6), 1775–1776.

    Article  Google Scholar 

  76. Rumpe, B. (2017). Agile modeling with UML: Code generation, testing, refactoring. Berlin: Springer International.

    Book  Google Scholar 

  77. Brecher, C., Dalibor, M., Rumpe, B., Schilling, K., & Wortmann, A. (2021). An ecosystem for digital shadows in manufacturing. In 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0, Amsterdam, September 2021. Amsterdam: Elsevier.

    Google Scholar 

  78. Erl, T. (2005). Service-oriented architecture (SOA): Concepts, technology and design (1st ed.). Hoboken: Prentice Hall.

    Google Scholar 

  79. Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Service oriented architectures: Approaches, technologies and research issues. VLDB Journal, 16(3), 389–415. Springer.

    Google Scholar 

  80. ISO/IEC. (2011). Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models. Standard ISO/IEC 25010:2011(E), International Organization for Standardization/International Electrotechnical Commission.

    Google Scholar 

  81. Gu, Q., & Lago, P. (2009). Exploring service-oriented system engineering challenges: A systematic literature review. Service Oriented Computing and Applications, 3(3), 171–188. Springer.

    Google Scholar 

  82. Canfora, G., & Di Penta, M. (2006). Testing services and service-centric systems: Challenges and opportunities. IT Professional, 8(2), 10–17 (2006). IEEE.

    Google Scholar 

  83. Blair, G., Bencomo, N., & France, R. B. (2009). Models@ run.time. Computer, 42(10), 22–27.

    Article  Google Scholar 

  84. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., & Pautasso, C. (2023). Patterns for API design: Simplifying integration with loosely coupled message exchanges. Boston: Addison-Wesley.

    Google Scholar 

  85. Clark, T., van den Brand, M., Combemale, B., & Rumpe, B. (2015). Conceptual model of the globalization for domain-specific languages. In Globalizing Domain-Specific Languages. LNCS (Vol. 9400, pp. 7–20). Cham: Springer.

    Google Scholar 

  86. Adam, K., Michael, J., Netz, L., Rumpe, B., & Varga, S. (2020). Enterprise information systems in academia and practice: Lessons learned from a MBSE Project. In 40 Years EMISA: Digital Ecosystems of the Future, LNI P-304, Bonn, 2020. GI.

    Google Scholar 

  87. Bodenbenner, M., Montavon, B., & Schmitt, R. H. (2022). Model-driven development of interoperable communication interfaces for fair sensor services. Measurement: Sensors, 24, 100442.

    Google Scholar 

  88. Gerasimov, A., Michael, J., Netz, L., & Rumpe, B. (2021). Agile generator-based GUI modeling for information systems. In Modelling to Program (M2P), March (pp. 113–126). Cham: Springer.

    Chapter  Google Scholar 

  89. Braun, S., Dalibor, M., Jansen, N., Jarke, M., Koren, I., Quix, C., Rumpe, B., Wimmer, M., & Wortmann, A. (2023). Engineering Digital Twins and digital shadows as key enablers for industry 4.0 (pp. 3–31). Cham: Springer.

    Google Scholar 

  90. Newman, S. (2015). Building microservices: Designing fine-grained systems (1st ed.). Sebastopol: O’Reilly.

    Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2023 Internet of Production - 390621612. Website: https://www.iop.rwth-aachen.de. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Model-Based DevOps - 505496753. Website: https://mbdo.github.io

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Michael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heithoff, M., Jansen, N., Michael, J., Rademacher, F., Rumpe, B. (2024). Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing. In: Sabri, S., Alexandridis, K., Lee, N. (eds) Digital Twin. Springer, Cham. https://doi.org/10.1007/978-3-031-67778-6_5

Download citation

Publish with us

Policies and ethics