Nothing Special   »   [go: up one dir, main page]

Skip to main content

Leveraging Foundation Models for Enhanced Detection of Colorectal Cancer Biomarkers in Small Datasets

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Colorectal cancer is the second leading cause of cancer death worldwide. Its high incidence and mortality rate highlight the critical role of advanced diagnostics and early detection methods. Advancements in computational pathology can significantly enhance diagnostic precision and treatment personalisation, ultimately improving patient outcomes. Hospitals and labs globally are transitioning toward routine whole slide image (WSI) digitisation. This digitisation process generates large volumes of data, offering an opportunity to enhance diagnostic capabilities through the use of machine learning techniques such as weakly supervised learning and self supervised learning (SSL). This study evaluates the performance of state-of-the-art self-supervised learning (SSL) feature extractor foundation models-CTransPath, Phikon, and UNI-against a pretrained ResNet-50, which serves as a benchmark. Our Transformer network analyses these feature vectors, focusing on their efficacy in predicting key colorectal cancer biomarkers within a small dataset containing 423 WSIs with only 8% of cases exhibiting mismatch repair (MMR) deficiency. The CTransPath model achieved the highest validation AUROC of 0.9466 for MMR classification but exhibited a test AUROC of 0.6880, demonstrating significant variability. In contrast, the UNI model demonstrated greater consistency and robustness, achieving a test AUROC of 0.7136, which additionally represents a 6.3% improvement over ResNet-50’s test AUROC of 0.6709. The results highlight the feasibility of using advanced machine learning models with smaller, sparsely annotated datasets, though the variability noted in some models underscores the challenges at the edge of data scarcity. Code and experimental framework available at https://github.com/CraigMyles/SurGen-CRC-Arena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. Campanella, G., et al.: Computational pathology at health system scale–self-supervised foundation models from three billion images. arXiv preprint arXiv:2310.07033 (2023)

  4. Chen, R.J., et al.: Towards a general-purpose foundation model for computational pathology. Nat. Med., 1–13 (2024)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9640–9649 (2021)

    Google Scholar 

  7. Dawson, H.: Digital pathology-rising to the challenge. Front. Med. 9, 888896 (2022)

    Article  Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Dippel, J., et al.: RudolfV: a foundation model by pathologists for pathologists. arXiv preprint arXiv:2401.04079 (2024)

  10. Dosovitskiy, A., et al.: An image is worth 16\(\,\times \,\)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  11. Filiot, A., et al.: Scaling self-supervised learning for histopathology with masked image modeling. medRxiv, pp. 2023–07 (2023)

    Google Scholar 

  12. Goyal, P., Mahajan, D., Gupta, A., Misra, I.: Scaling and benchmarking self-supervised visual representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6391–6400 (2019)

    Google Scholar 

  13. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  16. Iizuka, O., Kanavati, F., Kato, K., Rambeau, M., Arihiro, K., Tsuneki, M.: Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci. Rep. 10(1), 1504 (2020)

    Article  Google Scholar 

  17. Kang, M., Song, H., Park, S., Yoo, D., Pereira, S.: Benchmarking self-supervised learning on diverse pathology datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3344–3354 (2023)

    Google Scholar 

  18. Kim, Y.J., et al.: PAIP 2019: Liver cancer segmentation challenge. Med. Image Anal. 67, 101854 (2021)

    Article  Google Scholar 

  19. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  20. Lu, M.Y., et al.: A visual-language foundation model for computational pathology. Nat. Med., 1–12 (2024)

    Google Scholar 

  21. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  22. McCarthy, A.J., et al.: Heterogenous loss of mismatch repair (MMR) protein expression: a challenge for immunohistochemical interpretation and microsatellite instability (MSI) evaluation. J. Pathol.: Clin. Res. 5(2), 115–129 (2019)

    Google Scholar 

  23. Mohammadi, M., et al.: Weakly supervised learning and interpretability for endometrial whole slide image diagnosis. Exp. Biol. Med. 247(22), 2025–2037 (2022)

    Article  Google Scholar 

  24. Montezuma, D., et al.: Digital pathology implementation in private practice: specific challenges and opportunities. Diagnostics 12(2), 529 (2022)

    Article  Google Scholar 

  25. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  26. Retamero, J.A., Aneiros-Fernandez, J., Del Moral, R.G.: Complete digital pathology for routine histopathology diagnosis in a multicenter hospital network. Arch. Pathol. Lab. Med. 144(2), 221–228 (2020)

    Article  Google Scholar 

  27. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  29. Vorontsov, E., et al.: Virchow: a million-slide digital pathology foundation model. arXiv preprint arXiv:2309.07778 (2023)

  30. Wagner, S.J., et al.: Transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study. Cancer Cell 41(9), 1650–1661 (2023)

    Article  Google Scholar 

  31. Wang, X., et al.: Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. 81, 102559 (2022)

    Article  Google Scholar 

  32. Weinstein, J.N., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013)

    Article  Google Scholar 

  33. Zhou, J., et al.: iBOT: Image BERT pre-training with online tokenizer. arXiv preprint arXiv:2111.07832 (2021)

Download references

Acknowledgements

CM is supported by NHS Lothian. The authors would like to thank NHS Lothan for providing tissue specimen. This work is supported in part by the Industrial Centre for AI Research in Digital Diagnostics (iCAIRD) which is funded by Innovate UK on behalf of UK Research and Innovation (UKRI) (project number 104690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Myles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myles, C., Um, I.H., Harrison, D.J., Harris-Birtill, D. (2024). Leveraging Foundation Models for Enhanced Detection of Colorectal Cancer Biomarkers in Small Datasets. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66955-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66954-5

  • Online ISBN: 978-3-031-66955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics