Nothing Special   »   [go: up one dir, main page]

Skip to main content

SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Statistical shape modeling (SSM) is a powerful computational framework for quantifying and analyzing the geometric variability of anatomical structures, facilitating advancements in medical research, diagnostics, and treatment planning. Traditional methods for shape modeling from imaging data demand significant manual and computational resources. Additionally, these methods necessitate repeating the entire modeling pipeline to derive shape descriptors (e.g., surface-based point correspondences) for new data. While deep learning approaches have shown promise in streamlining the construction of SSMs on new data, they still rely on traditional techniques to supervise the training of the deep networks. Moreover, the predominant linearity assumption of traditional approaches restricts their efficacy, a limitation also inherited by deep learning models trained using optimized/established correspondences. Consequently, representing complex anatomies becomes challenging. To address these limitations, we introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images. By leveraging the shape prior learned directly from surface meshes in an unsupervised manner, the proposed model eliminates the need for an optimized shape model for training supervision. The strong shape prior acts as a teacher and regularizes the feature learning of the student network to guide it in learning image-based features that are predictive of surface correspondences. The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task while alleviating the linearity assumption. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that the proposed technique enhances the accuracy and robustness of image-driven SSM, providing a compelling alternative to current fully supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_5

    Chapter  Google Scholar 

  2. Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_46

  3. Adams, J., Elhabian, S.: Point2SSM: Learning morphological variations of anatomies from point cloud (2023). arXiv preprint arXiv:2305.14486

  4. Adams, J., Elhabian, S.Y.: Fully Bayesian VIB-DeepSSM. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14222. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_34

  5. Aziz, A.Z.B., Adams, J., Elhabian, S.: Progressive DeepSSM: training methodology for image-to-shape deep models. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds.) Shape in Medical Imaging. ShapeMI 2023. LNCS, vol. 14350. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46914-5_13

  6. Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: DeepSSM: a blueprint for image-to-shape deep learning models. Med. Image Anal. 91, 103034 (2024)

    Article  Google Scholar 

  7. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

    Chapter  Google Scholar 

  8. Borotikar, B., Mutsvangwa, T.E., Elhabian, S.Y., Audenaert, E.A.: Statistical model-based computational biomechanics: applications in joints and internal organs. Front. Bioeng. Biotechnol. 11, 1232464 (2023)

    Article  Google Scholar 

  9. Cates, J., Elhabian, S., Whitaker, R.: Shapeworks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)

    Google Scholar 

  10. Cerrolaza, J.J., et al.: Computational anatomy for multi-organ analysis in medical imaging: a review. Med. Image Anal. 56, 44–67 (2019)

    Article  Google Scholar 

  11. Chen, Z.: IM-NET: Learning implicit fields for generative shape modeling (2019)

    Google Scholar 

  12. Davies, R.H.: Learning shape: optimal models for analysing natural variability. The University of Manchester (United Kingdom) (2002)

    Google Scholar 

  13. Durrleman, S., et al.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. Neuroimage 101, 35–49 (2014)

    Article  Google Scholar 

  14. Friedrich, P., Wolleb, J., Bieder, F., Thieringer, F.M., Cattin, P.C.: Point cloud diffusion models for automatic implant generation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14228. Springer, Cham (2023).https://doi.org/10.1007/978-3-031-43996-4_11

  15. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  16. Heitz, G., Rohlfing, T., Maurer Jr, C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Medical Imaging 2005: Image Processing. vol. 5747, pp. 1411–1421. SPIE (2005)

    Google Scholar 

  17. Iyer, K., Elhabian, S.Y.: Mesh2SSM: from surface meshes to statistical shape models of anatomy. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_59

  18. Jiang, C., Huang, J., Tagliasacchi, A., Guibas, L.J.: ShapeFlow: learnable deformation flows among 3D shapes. Adv. Neural. Inf. Process. Syst. 33, 9745–9757 (2020)

    Google Scholar 

  19. Karanam, M.S.T., Kataria, T., Iyer, K., Elhabian, S.Y.: ADASSM: adversarial data augmentation in statistical shape models from images. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds.) Shape in Medical Imaging. ShapeMI 2023. LNCS, vol. 14350. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46914-5_8

  20. Lüdke, D., Amiranashvili, T., Ambellan, F., Ezhov, I., Menze, B.H., Zachow, S.: Landmark-free statistical shape modeling via neural flow deformations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_44

  21. Ma, J., et al.: AbdomenCT-1K: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022). https://doi.org/10.1109/TPAMI.2021.3100536

    Article  Google Scholar 

  22. Mori, N., et al.: Principal component analysis of texture features for grading of meningioma: not effective from the peritumoral area but effective from the tumor area. Neuroradiology 65(2), 257–274 (2023)

    Article  Google Scholar 

  23. Munsell, B.C., Dalal, P., Wang, S.: Evaluating shape correspondence for statistical shape analysis: a benchmark study. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 2023–2039 (2008)

    Article  Google Scholar 

  24. Riordan, E., et al.: Modeling methods in craniofacial virtual surgical planning. J. Craniofac. Surg. 34(4), 1191–1198 (2023)

    Article  Google Scholar 

  25. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. Int. J. Comput. Vision 40(3), 187–197 (2000)

    Article  Google Scholar 

  26. Styner, M., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. (1071), 242 (2006)

    Google Scholar 

  27. Tufegdzic, M., Trajanovic, M.D.: Building 3D surface model of the human hip bone from 2D radiographic images using parameter-based approach. In: Canciglieri Junior, O., Trajanovic, M.D. (eds.) Personalized Orthopedics. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98279-9_5

  28. Ukey, J., Elhabian, S.: Localization-aware deep learning framework for statistical shape modeling directly from images. In: Medical Imaging with Deep Learning (2023)

    Google Scholar 

  29. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (tog) 38(5), 1–12 (2019)

    Article  Google Scholar 

  30. Xu, H., Elhabian, S.Y.: Image2SSM: reimagining statistical shape models from images with radial basis functions. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_49

  31. Zhu, C., et al.: Clinical quality control of MRI total kidney volume measurements in autosomal dominant polycystic kidney disease. Tomography 9(4), 1341–1355 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health under grant numbers NIBIB-U24EB029011, NIAMS-R01AR076120, and NHLBI-R01HL135568. We thank the University of Utah Division of Cardiovascular Medicine for providing left atrium MRI scans and segmentations from the Atrial Fibrillation projects and the ShapeWorks team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krithika Iyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iyer, K., Adams, J., Elhabian, S.Y. (2024). SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66955-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66954-5

  • Online ISBN: 978-3-031-66955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics