Abstract
Statistical shape modeling (SSM) is a powerful computational framework for quantifying and analyzing the geometric variability of anatomical structures, facilitating advancements in medical research, diagnostics, and treatment planning. Traditional methods for shape modeling from imaging data demand significant manual and computational resources. Additionally, these methods necessitate repeating the entire modeling pipeline to derive shape descriptors (e.g., surface-based point correspondences) for new data. While deep learning approaches have shown promise in streamlining the construction of SSMs on new data, they still rely on traditional techniques to supervise the training of the deep networks. Moreover, the predominant linearity assumption of traditional approaches restricts their efficacy, a limitation also inherited by deep learning models trained using optimized/established correspondences. Consequently, representing complex anatomies becomes challenging. To address these limitations, we introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images. By leveraging the shape prior learned directly from surface meshes in an unsupervised manner, the proposed model eliminates the need for an optimized shape model for training supervision. The strong shape prior acts as a teacher and regularizes the feature learning of the student network to guide it in learning image-based features that are predictive of surface correspondences. The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task while alleviating the linearity assumption. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that the proposed technique enhances the accuracy and robustness of image-driven SSM, providing a compelling alternative to current fully supervised methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_5
Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_46
Adams, J., Elhabian, S.: Point2SSM: Learning morphological variations of anatomies from point cloud (2023). arXiv preprint arXiv:2305.14486
Adams, J., Elhabian, S.Y.: Fully Bayesian VIB-DeepSSM. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14222. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_34
Aziz, A.Z.B., Adams, J., Elhabian, S.: Progressive DeepSSM: training methodology for image-to-shape deep models. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds.) Shape in Medical Imaging. ShapeMI 2023. LNCS, vol. 14350. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46914-5_13
Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: DeepSSM: a blueprint for image-to-shape deep learning models. Med. Image Anal. 91, 103034 (2024)
Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23
Borotikar, B., Mutsvangwa, T.E., Elhabian, S.Y., Audenaert, E.A.: Statistical model-based computational biomechanics: applications in joints and internal organs. Front. Bioeng. Biotechnol. 11, 1232464 (2023)
Cates, J., Elhabian, S., Whitaker, R.: Shapeworks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)
Cerrolaza, J.J., et al.: Computational anatomy for multi-organ analysis in medical imaging: a review. Med. Image Anal. 56, 44–67 (2019)
Chen, Z.: IM-NET: Learning implicit fields for generative shape modeling (2019)
Davies, R.H.: Learning shape: optimal models for analysing natural variability. The University of Manchester (United Kingdom) (2002)
Durrleman, S., et al.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. Neuroimage 101, 35–49 (2014)
Friedrich, P., Wolleb, J., Bieder, F., Thieringer, F.M., Cattin, P.C.: Point cloud diffusion models for automatic implant generation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14228. Springer, Cham (2023).https://doi.org/10.1007/978-3-031-43996-4_11
Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29
Heitz, G., Rohlfing, T., Maurer Jr, C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Medical Imaging 2005: Image Processing. vol. 5747, pp. 1411–1421. SPIE (2005)
Iyer, K., Elhabian, S.Y.: Mesh2SSM: from surface meshes to statistical shape models of anatomy. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_59
Jiang, C., Huang, J., Tagliasacchi, A., Guibas, L.J.: ShapeFlow: learnable deformation flows among 3D shapes. Adv. Neural. Inf. Process. Syst. 33, 9745–9757 (2020)
Karanam, M.S.T., Kataria, T., Iyer, K., Elhabian, S.Y.: ADASSM: adversarial data augmentation in statistical shape models from images. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds.) Shape in Medical Imaging. ShapeMI 2023. LNCS, vol. 14350. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46914-5_8
Lüdke, D., Amiranashvili, T., Ambellan, F., Ezhov, I., Menze, B.H., Zachow, S.: Landmark-free statistical shape modeling via neural flow deformations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_44
Ma, J., et al.: AbdomenCT-1K: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022). https://doi.org/10.1109/TPAMI.2021.3100536
Mori, N., et al.: Principal component analysis of texture features for grading of meningioma: not effective from the peritumoral area but effective from the tumor area. Neuroradiology 65(2), 257–274 (2023)
Munsell, B.C., Dalal, P., Wang, S.: Evaluating shape correspondence for statistical shape analysis: a benchmark study. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 2023–2039 (2008)
Riordan, E., et al.: Modeling methods in craniofacial virtual surgical planning. J. Craniofac. Surg. 34(4), 1191–1198 (2023)
Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. Int. J. Comput. Vision 40(3), 187–197 (2000)
Styner, M., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. (1071), 242 (2006)
Tufegdzic, M., Trajanovic, M.D.: Building 3D surface model of the human hip bone from 2D radiographic images using parameter-based approach. In: Canciglieri Junior, O., Trajanovic, M.D. (eds.) Personalized Orthopedics. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98279-9_5
Ukey, J., Elhabian, S.: Localization-aware deep learning framework for statistical shape modeling directly from images. In: Medical Imaging with Deep Learning (2023)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (tog) 38(5), 1–12 (2019)
Xu, H., Elhabian, S.Y.: Image2SSM: reimagining statistical shape models from images with radial basis functions. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14220. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_49
Zhu, C., et al.: Clinical quality control of MRI total kidney volume measurements in autosomal dominant polycystic kidney disease. Tomography 9(4), 1341–1355 (2023)
Acknowledgements
This work was supported by the National Institutes of Health under grant numbers NIBIB-U24EB029011, NIAMS-R01AR076120, and NHLBI-R01HL135568. We thank the University of Utah Division of Cardiovascular Medicine for providing left atrium MRI scans and segmentations from the Atrial Fibrillation projects and the ShapeWorks team.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Iyer, K., Adams, J., Elhabian, S.Y. (2024). SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-66955-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66954-5
Online ISBN: 978-3-031-66955-2
eBook Packages: Computer ScienceComputer Science (R0)