Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unified Shape Analysis and Synthesis via Deformable Voxel Grids

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023)

Abstract

This paper extends the investigation and application of Deformable Voxel Grids (DVGs) into a unified framework for 3D shape analysis and synthesis. DVGs consist in a grid that approximates a shape’s silhouette via energy-minimization. This provides an improved embedding space over a regular voxel grid as it aligns with the geometry of the shape, and subsequently allows for the deformation of the shape by manipulating the DVG’s control points. We demonstrate how DVGs directly and naturally serve for an array of applications: correspondences, style transfer, shape retrieval, and PCA deformations. We further address the challenge of morphing non-parametric shapes, an ill-posed problem because of the trade-off between plausibility and smoothness, particularly under large topology changes. Thanks to DVGs, we extract a shape content descriptor, and propose a similarity metric adapted to the extracted content and a formulation of morphings as minimal paths in a graph. Our approach leverages the strengths and interpretability of DVGs while achieving morphing capabilities comparable to those provided by neural networks. Throughout the course of our study, we conducted qualitative and quantitative analyses on the robustness and quality of our proposed methods, and we provide valuable insights into the effective manual intervention that can enhance quality, given the interpretability of each component in our method. In conclusion, this work elucidates the wide-ranging implications and potential of DVGs in 3D shape comparison, processing, and morphing, paving the way for future research and applications in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note however that our application is different from the typical style transfer found in the literature.

  2. 2.

    As for the consistent alignment of shapes, this could be performed as a pre-processing step.

  3. 3.

    Say we optimized V up to its fourth resolution level, \(r = 3\), into an \(8 \times 8 \times 8\) grid. All subsequent subdivisions will not be optimized, but can still be used to refine the resolution of the voxelization.

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J.: Learning representations and generative models for 3D point clouds (2017)

    Google Scholar 

  2. Allen, B., Curless, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)

    Google Scholar 

  3. Barreira, N., Penedo, M.G., Mariño, C., Ansia, F.M.: Topological active volumes. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 337–344. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45179-2_42

    Google Scholar 

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Google Scholar 

  5. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical report. arXiv:1512.03012 [cs.GR], Stanford University — Princeton University—Toyota Technological Institute at Chicago (2015)

  6. Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991)

    Google Scholar 

  7. Dubrovina, A., Xia, F., Achlioptas, P., Shalah, M., Groscot, R., Guibas, L.J.: Composite shape modeling via latent space factorization. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  8. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. CoRR abs/1612.00603 (2016)

    Google Scholar 

  9. Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., Mitra, N.J.: Meta-representation of shape families. ACM Trans. Graph. 33(4), 34:1–34:11 (2014)

    Google Scholar 

  10. Gao, L., Lai, Y.K., Huang, Q., Hu, S.: A data-driven approach to realistic shape morphing. Comput. Graph. Forum 32 (2013). https://doi.org/10.1111/cgf.12065

  11. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN (2019)

    Google Scholar 

  12. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  13. Groscot, R., Cohen, L., Guibas, L.: Shape part transfer via semantic latent space factorization. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 511–519. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26980-7_53

    Google Scholar 

  14. Groscot, R., Cohen, L.D.: Deformable voxel grids for shape comparisons. In: Jiang, X., Tao, W., Zeng, D., Xie, Y. (eds.) Fourteenth International Conference on Digital Image Processing (ICDIP 2022), vol. 12342, p. 123423G. International Society for Optics and Photonics, SPIE (2022). https://doi.org/10.1117/12.2645961

  15. Groscot, R., Cohen, L.D.: Shape morphing as a minimal path in the graph of cubified shapes. In: de Sousa, A.A., Bashford-Rogers, T., Bouatouch, K. (eds.) Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2023, Volume 1: GRAPP, Lisbon, Portugal, 19–21 February 2023, pp. 98–109. Scitepress (2023). https://doi.org/10.5220/0011680200003417

  16. Groscot, R.: Separable 3D shape representations for shape processing. Ph.D. thesis (2021). http://www.theses.fr/2021UPSLD018, thèse de doctorat dirigée par Cohen, Laurent David Mathématiques appliquées Université Paris sciences et lettres 2021

  17. Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: CVPR 2018, Salt Lake City, United States, June 2018

    Google Scholar 

  18. Haibin, H., Kalogerakis, E., Marlin, B.: Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces. Comput. Graph. Forum 34 (2015)

    Google Scholar 

  19. Hanocka, R., Fish, N., Wang, Z., Giryes, R., Fleishman, S., Cohen-Or, D.: ALIGNet: partial-shape agnostic alignment via unsupervised learning (2018)

    Google Scholar 

  20. Hao, Z., Averbuch-Elor, H., Snavely, N., Belongie, S.: DualSDF: semantic shape manipulation using a two-level representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  21. Hart, J.: Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. Vis. Comput. 12 (1995)

    Google Scholar 

  22. Hemalatha, R., Thamizhvani, T., Dhivya, A.J.A., Joseph, J.E., Babu, B., Chandrasekaran, R.: Active contour based segmentation techniques for medical image analysis. In: Koprowski, R. (ed.) Medical and Biological Image Analysis, chap. 2. IntechOpen, Rijeka (2018)

    Google Scholar 

  23. Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V.: A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31(4), 55:1–55:11 (2012)

    Google Scholar 

  24. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570

  25. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv e-prints arXiv:1312.6114, December 2013

  26. Kleineberg, M., Fey, M., Weichert, F.: Adversarial generation of continuous implicit shape representations (2020)

    Google Scholar 

  27. Kurenkov, A., et al.: DeformNet: free-form deformation network for 3D shape reconstruction from a single image (2017)

    Google Scholar 

  28. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.J.: GRASS: generative recursive autoencoders for shape structures. ACM Trans. Graph. (Proc. SIGGRAPH 2017) (2017)

    Google Scholar 

  29. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: SIGGRAPH 1987, New York, NY, USA (1987)

    Google Scholar 

  30. van der Maaten, L., Hinton, G.E.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  31. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4D reconstruction by learning particle dynamics. In: International Conference on Computer Vision, October 2019

    Google Scholar 

  32. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4) (2012)

    Google Scholar 

  33. Park, E., Yang, J., Yumer, E., Ceylan, D., Berg, A.C.: Transformation-grounded image generation network for novel 3D view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  34. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  35. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation (2016)

    Google Scholar 

  36. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. CoRR abs/1706.02413 (2017)

    Google Scholar 

  37. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20(4), 151–160 (1986). https://doi.org/10.1145/15886.15903

  38. Shin, D., Fowlkes, C.C., Hoiem, D.: Pixels, voxels, and views: a study of shape representations for single view 3D object shape prediction. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3061–3069 (2018). https://doi.org/10.1109/CVPR.2018.00323

  39. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009)

    Google Scholar 

  40. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. CoRR abs/1703.09438 (2017)

    Google Scholar 

  41. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstractions by assembling volumetric primitives. In: Computer Vision and Pattern Regognition (CVPR) (2017)

    Google Scholar 

  42. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

    Google Scholar 

  43. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 82–90. Curran Associates Inc., USA (2016)

    Google Scholar 

  44. Zheng, Z., Yu, T., Dai, Q., Liu, Y.: Deep implicit templates for 3D shape representation (2020)

    Google Scholar 

Download references

Acknowledgements

This work was funded in part by the French government under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Groscot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Groscot, R., Cohen, L.D. (2024). Unified Shape Analysis and Synthesis via Deformable Voxel Grids. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2023. Communications in Computer and Information Science, vol 2103. Springer, Cham. https://doi.org/10.1007/978-3-031-66743-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66743-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66742-8

  • Online ISBN: 978-3-031-66743-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics