Nothing Special   »   [go: up one dir, main page]

Skip to main content

Architecture for Digital Twin-Based Reinforcement Learning Optimization of Cyber-Physical Systems

  • Conference paper
  • First Online:
Software Architecture. ECSA 2023 Tracks, Workshops, and Doctoral Symposium (ECSA 2023)

Abstract

The optimization of complex cyber-physical systems is a crucial task for their correct functioning, usability, and commercial viability. Due to their complexity, scale and resource intensiveness, conventional manual optimization is infeasible in many instances. We investigate the combination of the Digital Twin paradigm and Reinforcement Learning framework to address the long response times, limited availability of data, and the intractability of such systems. Here, the Digital Twin functions as the training environment in different development phases of the optimization. In this position paper we showcase our ongoing research on developing a reference architecture of a Digital Twin-Artificial Intelligence optimization system. This includes presenting the development process of the optimization system in terms of phases, an architecture from four viewpoints and an exemplary implementation.

The research is carried out as part of the ITEA4 20216 ASIMOV project. The ASIMOV activities are supported by the Netherlands Organization for Applied Scientific Research TNO and the Dutch Ministry of Economic Affairs and Climate (project number: AI211006). This research is also partially funded by the German Federal Ministry of Education and Research (BMBF) within the project ASIMOV-D under grant agreement No. 01IS21022B [AVL], 01IS21022D [Liangdao], 01IS21022F [TrianGraphics] and 01IS21022G [DLR] based on a decision of the German Bundestag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.avl.com/en/simulation-solutions/software-offering/simulation-tools-z/modelconnect.

  2. 2.

    https://www.docker.com/.

  3. 3.

    https://www.basys40.de/ and https://github.com/eclipse-basyx.

References

  1. Abdolmaleki, A., Springenberg, J.T., Tassa, Y., Munos, R., Heess, N., Riedmiller, M.: Maximum a posteriori policy optimisation (2018). https://doi.org/10.48550/arXiv.1806.06920

  2. Aheleroff, S., Xu, X., Zhong, R.Y., Lu, Y.: Digital twin as a service (DTAAS) in industry 4.0: An architecture reference model. Adv. Eng. Inform. 47, 101225 (2021). https://doi.org/10.1016/j.aei.2020.101225

    Article  Google Scholar 

  3. Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. Int. J. Comput. Integr. Manuf. 33(5), 429–439 (2020). https://doi.org/10.1080/0951192X.2020.1747642

    Article  Google Scholar 

  4. Amiranashvili, A., Argus, M., Hermann, L., Burgard, W., Brox, T.: Pre-training of deep RL agents for improved learning under domain randomization. eprint arXiv:2104.14386 (2021). https://doi.org/10.48550/arXiv.2104.14386

  5. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499

    Article  Google Scholar 

  6. Brankovic, B., Binder, C., Draxler, D., Neureiter, C., Lastro, G.: Towards a cross-domain modeling approach in system-of-systems architectures. In: Boy, G.A., Guegan, A., Krob, D., Vion, V. (eds.) CSDM 2019, pp. 164–175. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34843-4_14

    Chapter  Google Scholar 

  7. Cobbe, K., Klimov, O., Hesse, C., Kim, T., Schulman, J.: Quantifying generalization in reinforcement learning. In: 36th International Conference on Machine Learning, vol. PMLR 97. PMLR, Long Beach, USA (2019)

    Google Scholar 

  8. Degrave, J., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022). https://doi.org/10.1038/s41586-021-04301-9

    Article  Google Scholar 

  9. Dulac-Arnold, G., et al.: Challenges of real-world reinforcement learning: definitions, benchmarks and analysis. Mach. Learn. 110(9), 2419–2468 (2021)

    Article  MathSciNet  Google Scholar 

  10. Ferko, E., Bucaioni, A., Behnam, M.: Architecting digital twins. IEEE Access 10, 50335–50350 (2022). https://doi.org/10.1109/ACCESS.2022.3172964

    Article  Google Scholar 

  11. Gan, X., Zuo, Y., Zhang, A., Li, S., Tao, F.: Digital twin-enabled adaptive scheduling strategy based on deep reinforcement learning. Sci. China Technol. Sci. 1–15 (2023)

    Google Scholar 

  12. Grieves, M., Vickers, J., (None): Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38756-7

  13. Haj-Ali, A., Ahmed, N.K., Willke, T., Gonzalez, J., Asanovic, K., Stoica, I.: A view on deep reinforcement learning in system optimization

    Google Scholar 

  14. Hankel, M., Rexroth, B.: Das Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0)

    Google Scholar 

  15. IEEE: IEEE standard for modeling and simulation (m &s) high level architecture (HLA): Framework and rules (2010). https://standards.ieee.org/ieee/1516/3744/

  16. Jamil, S., Rahman, M.: Fawad: a comprehensive survey of digital twins and federated learning for industrial internet of things (IIOT), internet of vehicles (IOV) and internet of drones (IOD). Appl. Syst. Innov. 5(3), 56 (2022)

    Article  Google Scholar 

  17. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020). https://doi.org/10.1016/j.cirpj.2020.02.002

    Article  Google Scholar 

  18. Ju, H., Juan, R., Gomez, R., Nakamura, K., Li, G.: Transferring policy of deep reinforcement learning from simulation to reality for robotics. Nature Mach. Intell. 4(12), 1077–1087 (2022). https://doi.org/10.1038/s42256-022-00573-6

    Article  Google Scholar 

  19. Julian, R., Swanson, B., Sukhatme, G.S., Levine, S., Finn, C., Hausman, K.: Never stop learning: the effectiveness of fine-tuning in robotic reinforcement learning. arXiv preprint arXiv:2004.10190 (2020)

  20. Kairouz, P., et al. (eds.): Advances and Open Problems in Federated Learning, Foundation and Trends in Machine Learning, vol. 14. Now Publishers Inc. (2021). https://doi.org/10.1561/2200000083

  21. Matulis, M., Harvey, C.: A robot arm digital twin utilising reinforcement learning. Comput. Graph. 95, 106–114 (2021). https://doi.org/10.1016/j.cag.2021.01.011

    Article  Google Scholar 

  22. Menzel, T., Bagschik, G., Maurer, M.: 2018 IEEE Intelligent Vehicles Symposium (IV): 26–30 June 2018, Piscataway, NJ. IEEE (2018)

    Google Scholar 

  23. Modelica Association Project FMI: Functional mock-up interface for model exchange and co-simulation (2019)

    Google Scholar 

  24. Neurohr, C., Westhofen, L., Henning, T., de Graaff, T., Möhlmann, E., Böde, E.: Fundamental considerations around scenario-based testing for automated driving. In: IEEE Intelligent Vehicles Symposium Proceedings, pp. 121–127 (2020). https://doi.org/10.1109/IV47402.2020.9304823

  25. Osiński, B., et al.: Simulation-based reinforcement learning for real-world autonomous driving. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6411–6418. IEEE (2020)

    Google Scholar 

  26. Pohl, K., Broy, M., Daembkes, H., Hönninger, H. (eds.): Advanced Model-Based Engineering of Embedded Systems. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48003-9

  27. Shen, G., et al.: Deep reinforcement learning for flocking motion of multi-UAV systems: learn from a digital twin. IEEE Internet Things J. 9(13), 11141–11153 (2021)

    Article  Google Scholar 

  28. Shen, G., Lei, L., Zhang, X., Li, Z., Cai, S., Zhang, L.: Multi-UAV cooperative search based on reinforcement learning with a digital twin driven training framework. IEEE Trans. Veh. Technol. 72, 8354–8368 (2023)

    Article  Google Scholar 

  29. Stark, R., Damerau, T.: Digital twin. In: Chatti, S., Tolio, T. (eds.) CIRP Encyclopedia of Production Engineering, pp. 1–8. Springer Berlin Heidelberg, Heidelberg (2019). https://doi.org/10.1007/978-3-642-35950-7_16870-1

  30. Sun, W., Lei, S., Wang, L., Liu, Z., Zhang, Y.: Adaptive federated learning and digital twin for industrial internet of things. IEEE Trans. Industr. Inf. 17(8), 5605–5614 (2021). https://doi.org/10.1109/TII.2020.3034674

    Article  Google Scholar 

  31. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning, 2nd edn. The MIT Press, Cambridge, Massachusetts and London, England (2018)

    Google Scholar 

  32. Wagg, D.J., Worden, K., Barthorpe, R.J., Gardner, P.: Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE - ASME J. Risk Uncertainty Eng. Syst. 6(3) (2020). https://doi.org/10.1115/1.4046739

  33. Zhang, Z., Zahng, D., Qiu, R.C.: Deep reinforcement learning for power system: an overview. CSEE J. Power Energy Syst. 6(1) (2020). https://doi.org/10.17775/CSEEJPES.2019.00920

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Modrakowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Modrakowski, E. et al. (2024). Architecture for Digital Twin-Based Reinforcement Learning Optimization of Cyber-Physical Systems. In: Tekinerdoğan, B., Spalazzese, R., Sözer, H., Bonfanti, S., Weyns, D. (eds) Software Architecture. ECSA 2023 Tracks, Workshops, and Doctoral Symposium. ECSA 2023. Lecture Notes in Computer Science, vol 14590. Springer, Cham. https://doi.org/10.1007/978-3-031-66326-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66326-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66325-3

  • Online ISBN: 978-3-031-66326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics