Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing Maritime Behaviour Analysis Through Novel Feature Engineering and Digital Shadow Modelling: A Case Study in the Kiel Fjord

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2024)

Abstract

With the continuous evolution of maritime technology, there is a growing need for analysing and modelling vessel behaviour in complex waterway systems. This paper presents an extension and utilisation of the Surface Vessel Nautical Behaviour Analysis (SV-NBA) framework for in-depth spatio-temporal analysis of maritime surface vessels’ behaviour in Kiel Fjord. Leveraging one year of collected Automatic Identification System (AIS) data, we extracted features from the recorded data. Three feature sets are generated and compared using expert-knowledge features, methods for feature selection, and Denoising Autoencoder latent space representation. Behaviour modelling and analysis utilises clustered data from the three feature sets, employing Gaussian Mixture Models (GMM). The trained GMM models serve as digital shadows, enabling storage-efficient representation of vessel behaviour and facilitate applications such as online situational awareness and marine-traffic management. These digital shadows serve as observer-layer in a dynamic autonomous system of system, offering insights into maritime activities and enhancing navigation safety in busy waterways. This research contributes to the advancement of autonomous navigation systems and supports efficient strategies for managing maritime traffic.

This research has been partly funded by the German Federal Ministry for Digital and Transport within the project “CAPTN Förde Areal II - Praxisnahe Erforschung der (teil)autonomen, emissionsfreien Schifffahrt im digitalen Testfeld” (45DTWV08D).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/CAPTN-sh/SV-NBA__Analysis.

  2. 2.

    https://github.com/CAPTN-sh/SV-NBA__Features-Generation.

References

  1. National marine electronics association - nmea 0183. https://bit.ly/3sWoRMv. Accessed 15 Sept 2023

  2. Al-Falouji, G., Beyer, T., Tomforde, S.: From social robots to autonomous surface vessels’ navigation. In: 2023 IEEE International Conference on Autonomic Comp. and Self-Organizing Systems Companion (ACSOS-C), pp. 59–64. IEEE (2023)

    Google Scholar 

  3. Al-Falouji, G., Gruhl, C., Tomforde, S.: Digital shadows in self-improving system integration: a concept u sing generative modelling. In: 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), pp. 166–171. IEEE (2021)

    Google Scholar 

  4. Al-Falouji, G., Haschke, Lukas, H., Nowotka, D., Tomforde, S.: A framework for surface vessel nautical-behaviour analysis towards cognitive situation awareness. In: CogSIMA EPiC Series (2023)

    Google Scholar 

  5. Breivik, M., et al.: MPC-based mid-level collision avoidance for asvs using nonlinear programming. In: 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 766–772. IEEE (2017)

    Google Scholar 

  6. Caliński, T., J.A.H.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1–27 (1974)

    Google Scholar 

  7. Chen, Q., Xiao, C., Wen, Y., Tao, M., Zhan, W.: Ship intention prediction at intersections based on vision and bayesian framework. J. Marine Sci. Eng. 10(5), 639 (2022)

    Article  Google Scholar 

  8. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–1(2), 224–227 (1979)

    Article  Google Scholar 

  9. European Maritime Safety Agency (EMSA): Annual overview of marine casualties and incidents 2023 (2023). https://bit.ly/3x3MeWw

  10. Felski, A., Jaskólski, K.: The integrity of information received by means of AIS during anti-collision manoeuvring. TransNav 7(1), 95–100 (2013)

    Article  Google Scholar 

  11. Felski, A., Zwolak, K.: The ocean-going autonomous ship-challenges and threats. J. Marine Sci. Eng. 8(1), 41 (2020)

    Article  Google Scholar 

  12. IMO: Resolution A.1106(29) (2001). https://bit.ly/3EIC7H3. Accessed 3 Oct 2022

  13. Le Guillarme, N., Lerouvreur, X.: Unsupervised extraction of knowledge from s-AIS data for maritime situational awareness. In: Proceedings of the 16th International Conference on Information Fusion, pp. 2025–2032. IEEE (2013)

    Google Scholar 

  14. Liu, S., Xing, B., Li, B., Gu, M.: Ship information system: overview and research trends. Int. J. Nav. Archit. Ocean Eng. 6(3), 670–684 (2014)

    Article  Google Scholar 

  15. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Survival in the Real World. Birkhäuser (2017)

    Google Scholar 

  16. Newaliya, N., Singh, Y.: A review of maritime spatio-temporal data analytics. In: 2021 International Conference on Computational Performance Evaluation (ComPE), pp. 219–226. IEEE (2021)

    Google Scholar 

  17. Riveiro, M., Pallotta, G., Vespe, M.: Maritime anomaly detection: a review. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 8(5), e1266 (2018)

    Article  Google Scholar 

  18. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. App. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  19. Schwehr, K.D., McGillivary, P.A.: Marine ship automatic identification system (AIS) for enhanced coastal security capabilities: an oil spill tracking application. In: OCEANS 2007, pp. 1–9. IEEE (2007)

    Google Scholar 

  20. Xu, T., Zhang, Q.: Ship traffic flow prediction in wind farms water area based on spatiotemporal dependence. J. Marine Sci. Eng. 10(2), 295 (2022)

    Article  Google Scholar 

  21. Yang, Y., Liu, Y., Li, G., Zhang, Z., Liu, Y.: Harnessing the power of machine learning for AIS data-driven maritime research: a comprehensive review. Transport. Res. Part E: Logist. Transport. Rev. 183, 103426 (2024)

    Article  Google Scholar 

  22. Zhang, L., Meng, Q., Xiao, Z., Fu, X.: A novel ship trajectory reconstruction approach using AIS data. Ocean Eng. 159, 165–174 (2018)

    Article  Google Scholar 

  23. Zhao, L., Roh, M.I.: Colregs-compliant multiship collision avoidance based on deep reinforcement learning. Ocean Eng. 191, 106436 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Al-Falouji .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Table 2. List of features. Basic AIS are marked by \(*\).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Falouji, G., Gao, S., Haschke, L., Nowotka, D., Tomforde, S. (2024). Enhancing Maritime Behaviour Analysis Through Novel Feature Engineering and Digital Shadow Modelling: A Case Study in the Kiel Fjord. In: Fey, D., Stabernack, B., Lankes, S., Pacher, M., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2024. Lecture Notes in Computer Science, vol 14842. Springer, Cham. https://doi.org/10.1007/978-3-031-66146-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66146-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66145-7

  • Online ISBN: 978-3-031-66146-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics