Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1146))

  • 121 Accesses

Abstract

In this paper, we are presenting a proposed method called Hybrid Fuzzy Fireworks and Grey Wolf Metaheuristic Algorithm, which is a method that used Fuzzy Logic for controlling a parameter. In this work we dynamically adjust the amplitude coefficient parameter with a Fuzzy Inference System using Triangular membership functions. The main goal of this work is to control the amplitude explosion for each solution into the search space of the hybrid algorithm; We tested the performance of the hybrid fuzzy method with benchmark mathematical functions. The proposed method is denoted as F-FWA-GWO and is explained in detail in the following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Chen, L. Mi, Z. Liu, B. Qiu, H. Zhao, L. Xu, Predefined-time synchronization of competitive neural networks. Neural Netw. 142, 492–499 (2021)

    Article  Google Scholar 

  2. L.A. Zadeh, Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. I(I), 89-0084 (1989)

    Google Scholar 

  3. F. Aladwan, M. Alshraideh, M. Rasol, A genetic algorithm approach for breaking of simplified data encryption standard. Int. J. Secur. Appl. 9(9), 295–304 (2015)

    Google Scholar 

  4. P. Nerurkar, A. Shirkeb, M. Chandanec, S. Bhirudd, A novel heuristic for evolutionary clustering. Procedia Comput. Sci. 125, 780–789 (2018)

    Article  Google Scholar 

  5. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (OUP USA, 1999)

    Google Scholar 

  6. B. Melián, J. Moreno, Metaheuristics: a global vision. Ibero-Am. J. Artif. Intell. 19, 7–28 (2003)

    Google Scholar 

  7. U. Can, B. Alatas, Physics based metaheuristic algorithms for global optimization. Am. J. Inf. Sci. Comput. Eng. 1, 94–106 (2015)

    Google Scholar 

  8. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, in Evolut. Comput., IEEE Trans (1997), pp. 67–82

    Google Scholar 

  9. J. Li, S. Zheng, Adaptive fireworks algorithm, in IEEE Congress on Evolutionary Computation (CEC) (2014), pp. 3214–3221

    Google Scholar 

  10. Y. Tan, Fireworks Algorithm (Springer-Verlag, Berlin Heidelberg, 2015), pp.355–364

    Book  Google Scholar 

  11. Y. Tan, Y. Zhu, Fireworks Algorithm for Optimization (Springer-Verlag, Berlin Heidelberg, 2010), pp.355–364

    Google Scholar 

  12. L. Rodriguez, O. Castillo, J. Soria, Grey wolf optimizer (GWO) with dynamic adaptation of parameters, in IEEE CEC 2016 (2016), pp. 3116–3123

    Google Scholar 

  13. L. Telescaa, M. Bernardib, C. Rovellib, Intra-cluster and inter-cluster time correlations in lightning sequences. Physica A 356, 655–661 (2005)

    Article  Google Scholar 

  14. B.Y. Wu, On the intercluster distance of a tree metric. Theoret. Comput. Sci. 369, 136–141 (2006)

    Article  MathSciNet  Google Scholar 

  15. N.H. Abdulmajeed, M. Ayob, A firework algorithm for solving capacitated vehicle routing problem. Int. J. Adv. Comput. Technol. (IJACT) 6(1), 79–86 (2014)

    Google Scholar 

  16. X. Chena, S. Liua, T. Chena, Z. Zhangb, H. Zhangb, An improved semi-supervised clustering algorithm for multi-density datasets with fewer constraints. Procedia Eng. 29, 4325–4329 (2012)

    Article  Google Scholar 

  17. M. Simoes, K. Bose, J. Spiegel, Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans. Power Electron. 12(1), 87–95 (1997)

    Article  Google Scholar 

  18. M.A. Sanchez, O. Castillo, J.R. Castro, P. Melin, Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)

    Google Scholar 

  19. Y. Zheng, Q. Song, S.-Y Chen, Multiobjective fireworks optimization for variable-rate fertilization in oil crop production. Appl. Soft Comput. 13, 4253–4263 (2013)

    Google Scholar 

  20. D. Sanchez, P. Melin, O. Castillo, A grey wolf optimizer for modular granular neural networks for human recognition. Comput. Intell. Neurosci. 2017, 4180510:1–4180510:26 (2017)

    Google Scholar 

  21. X. Liu, X. Qin, A neighborhood information utilization fireworks algorithm and its application to traffic flow prediction. Expert Syst. Appl. 183, 115189 (2021)

    Article  Google Scholar 

  22. J. Barraza, P. Melin, F.Valdez, Fuzzy FWA with dynamic adaptation of parameters, in IEEE CEC 2016, pp. 4053–4060

    Google Scholar 

  23. J. Barraza, F. Valdez, P. Melin, C. Gonzalez, Fireworks algorithm (FWA) with adaptation of parameters using fuzzy logic, in Nature-Inspired Design of Hybrid Intelligent Systems (2017), pp. 313–327

    Google Scholar 

  24. L. Rodríguez, O. Castillo, J. Soria, A study of parameters of the grey wolf optimizer algorithm for dynamic adaptation with fuzzy logic, in Nature-Inspired Design of Hybrid Intelligent Systems (2017), pp. 371–390

    Google Scholar 

  25. J. Barraza, L. Rodríguez, O. Castillo, P. Melin, F. Valdez, A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J. Optim. Res. Artic. 2018, 6495362 (2018)

    Google Scholar 

  26. J. Soler, F. Tencé, L. Gaubert, C. Buche, Data clustering and similarity, in Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference (2013), pp. 492–495

    Google Scholar 

  27. H.A. Sturges, The choice of a class interval. J. Am. Stat. Assoc. 21(153), 65–66 (1926)

    Google Scholar 

  28. E. Rubio, O. Castillo, Interval type-2 fuzzy possibilistic C-means optimization using particle swarm optimization, in Nature-Inspired Design of Hybrid Intelligent Systems (2017), pp. 63–78

    Google Scholar 

  29. J. Soto, P. Melin, Optimization of the fuzzy integrators in ensembles of ANFIS model for time series prediction: the case of Mackey-Glass, in IFSA-EUSFLAT 2015

    Google Scholar 

  30. J. Barraza, P. Melin, F. Valdez, C.I. González, Fuzzy fireworks algorithm based on a sparks dispersion measure. Algorithms 10(3), 83 (2017)

    Article  Google Scholar 

  31. R. Larson, B. Farber, Elementary Statistics Picturing the World (Pearson Education Inc., 2003), pp. 428–433

    Google Scholar 

  32. M. Črepinšek, S.H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35:32 (2013)

    Google Scholar 

  33. J. Liu, S. Zheng, Y. Tan, The improvement on controlling exploration and exploitation of firework algorithm, in Advances in Swarm Intelligence (Springer, 2013), pp. 11–23

    Google Scholar 

  34. Y. Tan, S. Zheng, Dynamic search in fireworks algorithm, in Evolutionary Computation (CEC 2014)

    Google Scholar 

  35. J. Li, Y. Tan, A comprehensive review of the fireworks algorithm. ACM Comput. Surv. (CSUR) 52(6), 1–28 (2019)

    Article  Google Scholar 

  36. J. Barraza, P. Melin, F. Valdez, C.I. González, O. Castillo, Iterative fireworks algorithm with fuzzy coefficients, in FUZZ-IEEE 2017, Naples, Italy, 9–12 July 2017, pp. 1–6

    Google Scholar 

  37. F. Olivas, F. Valdez, P. Melin, A. Sombra, O. Castillo, Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)

    Article  Google Scholar 

  38. F. Olivas, F. Valdez, O. Castillo, P. Melin, Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)

    Article  Google Scholar 

  39. F. Olivas, F. Valdez, O. Castillo, C.I. Gonzalez, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)

    Google Scholar 

  40. E. Ontiveros, P. Melin, O. Castillo, Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis. Inf. Sci. 525, 37–53 (2020)

    Article  MathSciNet  Google Scholar 

  41. J.E. Moreno, M.A. Sanchez, O. Mendoza, A. Rodriguez-Diaz, O. Castillo, P. Melin, J.R. Castro, Design of an interval type-2 fuzzy model with justifiable uncertainty. Inf. Sci. 513, 206–221 (2020)

    Article  Google Scholar 

  42. K. Tai, A.-R. El-Sayed, M. Biglarbegian, C.I. Gonzalez, O. Castillo, S. Mahmud, Review of recent type-2 fuzzy controller applications. Algorithms 9(2), 39 (2016)

    Google Scholar 

  43. O. Castillo, E. Lizzarraga, J. Soria, P. Melin, F. Valdez, New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 294, 203–215 (2015)

    Article  MathSciNet  Google Scholar 

  44. L. Amador-Angulo, O. Mendoza, J.R. Castro, A. Rodriguez-Diaz, P. Melin, O. Castillo, Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16(9), 1458 (2016)

    Article  Google Scholar 

  45. F. Valdez, J.C. Vazquez, P. Melin, O. Castillo, Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52, 1070–1083 (2017)

    Article  Google Scholar 

  46. M. Guerrero, F. Valdez, O. Castillo, Comparative study between type-1 and interval type-2 fuzzy systems in parameter adaptation for the cuckoo search algorithm. Symmetry 14, 2289 (2022). https://doi.org/10.3390/SYM14112289

  47. F. Cuevas, O. Castillo, P. Cortés-Antonio, Generalized type-2 fuzzy parameter adaptation in the marine predator algorithm for fuzzy controller parameterization in mobile robots. Symmetry 14, 859 (2022). https://doi.org/10.3390/SYM14050859

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barraza, J., Rodriguez, L., Valdez, F., Melin, P., Castillo, O. (2024). A Hybrid Fuzzy Fireworks and Grey Wolf Metaheuristic Algorithm. In: Melin, P., Castillo, O. (eds) New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms. Studies in Computational Intelligence, vol 1146. Springer, Cham. https://doi.org/10.1007/978-3-031-53713-4_16

Download citation

Publish with us

Policies and ethics