Abstract
In this paper, we are presenting a proposed method called Hybrid Fuzzy Fireworks and Grey Wolf Metaheuristic Algorithm, which is a method that used Fuzzy Logic for controlling a parameter. In this work we dynamically adjust the amplitude coefficient parameter with a Fuzzy Inference System using Triangular membership functions. The main goal of this work is to control the amplitude explosion for each solution into the search space of the hybrid algorithm; We tested the performance of the hybrid fuzzy method with benchmark mathematical functions. The proposed method is denoted as F-FWA-GWO and is explained in detail in the following sections.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
C. Chen, L. Mi, Z. Liu, B. Qiu, H. Zhao, L. Xu, Predefined-time synchronization of competitive neural networks. Neural Netw. 142, 492–499 (2021)
L.A. Zadeh, Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. I(I), 89-0084 (1989)
F. Aladwan, M. Alshraideh, M. Rasol, A genetic algorithm approach for breaking of simplified data encryption standard. Int. J. Secur. Appl. 9(9), 295–304 (2015)
P. Nerurkar, A. Shirkeb, M. Chandanec, S. Bhirudd, A novel heuristic for evolutionary clustering. Procedia Comput. Sci. 125, 780–789 (2018)
E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (OUP USA, 1999)
B. Melián, J. Moreno, Metaheuristics: a global vision. Ibero-Am. J. Artif. Intell. 19, 7–28 (2003)
U. Can, B. Alatas, Physics based metaheuristic algorithms for global optimization. Am. J. Inf. Sci. Comput. Eng. 1, 94–106 (2015)
D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, in Evolut. Comput., IEEE Trans (1997), pp. 67–82
J. Li, S. Zheng, Adaptive fireworks algorithm, in IEEE Congress on Evolutionary Computation (CEC) (2014), pp. 3214–3221
Y. Tan, Fireworks Algorithm (Springer-Verlag, Berlin Heidelberg, 2015), pp.355–364
Y. Tan, Y. Zhu, Fireworks Algorithm for Optimization (Springer-Verlag, Berlin Heidelberg, 2010), pp.355–364
L. Rodriguez, O. Castillo, J. Soria, Grey wolf optimizer (GWO) with dynamic adaptation of parameters, in IEEE CEC 2016 (2016), pp. 3116–3123
L. Telescaa, M. Bernardib, C. Rovellib, Intra-cluster and inter-cluster time correlations in lightning sequences. Physica A 356, 655–661 (2005)
B.Y. Wu, On the intercluster distance of a tree metric. Theoret. Comput. Sci. 369, 136–141 (2006)
N.H. Abdulmajeed, M. Ayob, A firework algorithm for solving capacitated vehicle routing problem. Int. J. Adv. Comput. Technol. (IJACT) 6(1), 79–86 (2014)
X. Chena, S. Liua, T. Chena, Z. Zhangb, H. Zhangb, An improved semi-supervised clustering algorithm for multi-density datasets with fewer constraints. Procedia Eng. 29, 4325–4329 (2012)
M. Simoes, K. Bose, J. Spiegel, Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans. Power Electron. 12(1), 87–95 (1997)
M.A. Sanchez, O. Castillo, J.R. Castro, P. Melin, Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)
Y. Zheng, Q. Song, S.-Y Chen, Multiobjective fireworks optimization for variable-rate fertilization in oil crop production. Appl. Soft Comput. 13, 4253–4263 (2013)
D. Sanchez, P. Melin, O. Castillo, A grey wolf optimizer for modular granular neural networks for human recognition. Comput. Intell. Neurosci. 2017, 4180510:1–4180510:26 (2017)
X. Liu, X. Qin, A neighborhood information utilization fireworks algorithm and its application to traffic flow prediction. Expert Syst. Appl. 183, 115189 (2021)
J. Barraza, P. Melin, F.Valdez, Fuzzy FWA with dynamic adaptation of parameters, in IEEE CEC 2016, pp. 4053–4060
J. Barraza, F. Valdez, P. Melin, C. Gonzalez, Fireworks algorithm (FWA) with adaptation of parameters using fuzzy logic, in Nature-Inspired Design of Hybrid Intelligent Systems (2017), pp. 313–327
L. Rodríguez, O. Castillo, J. Soria, A study of parameters of the grey wolf optimizer algorithm for dynamic adaptation with fuzzy logic, in Nature-Inspired Design of Hybrid Intelligent Systems (2017), pp. 371–390
J. Barraza, L. Rodríguez, O. Castillo, P. Melin, F. Valdez, A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J. Optim. Res. Artic. 2018, 6495362 (2018)
J. Soler, F. Tencé, L. Gaubert, C. Buche, Data clustering and similarity, in Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference (2013), pp. 492–495
H.A. Sturges, The choice of a class interval. J. Am. Stat. Assoc. 21(153), 65–66 (1926)
E. Rubio, O. Castillo, Interval type-2 fuzzy possibilistic C-means optimization using particle swarm optimization, in Nature-Inspired Design of Hybrid Intelligent Systems (2017), pp. 63–78
J. Soto, P. Melin, Optimization of the fuzzy integrators in ensembles of ANFIS model for time series prediction: the case of Mackey-Glass, in IFSA-EUSFLAT 2015
J. Barraza, P. Melin, F. Valdez, C.I. González, Fuzzy fireworks algorithm based on a sparks dispersion measure. Algorithms 10(3), 83 (2017)
R. Larson, B. Farber, Elementary Statistics Picturing the World (Pearson Education Inc., 2003), pp. 428–433
M. Črepinšek, S.H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35:32 (2013)
J. Liu, S. Zheng, Y. Tan, The improvement on controlling exploration and exploitation of firework algorithm, in Advances in Swarm Intelligence (Springer, 2013), pp. 11–23
Y. Tan, S. Zheng, Dynamic search in fireworks algorithm, in Evolutionary Computation (CEC 2014)
J. Li, Y. Tan, A comprehensive review of the fireworks algorithm. ACM Comput. Surv. (CSUR) 52(6), 1–28 (2019)
J. Barraza, P. Melin, F. Valdez, C.I. González, O. Castillo, Iterative fireworks algorithm with fuzzy coefficients, in FUZZ-IEEE 2017, Naples, Italy, 9–12 July 2017, pp. 1–6
F. Olivas, F. Valdez, P. Melin, A. Sombra, O. Castillo, Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)
F. Olivas, F. Valdez, O. Castillo, P. Melin, Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)
F. Olivas, F. Valdez, O. Castillo, C.I. Gonzalez, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)
E. Ontiveros, P. Melin, O. Castillo, Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis. Inf. Sci. 525, 37–53 (2020)
J.E. Moreno, M.A. Sanchez, O. Mendoza, A. Rodriguez-Diaz, O. Castillo, P. Melin, J.R. Castro, Design of an interval type-2 fuzzy model with justifiable uncertainty. Inf. Sci. 513, 206–221 (2020)
K. Tai, A.-R. El-Sayed, M. Biglarbegian, C.I. Gonzalez, O. Castillo, S. Mahmud, Review of recent type-2 fuzzy controller applications. Algorithms 9(2), 39 (2016)
O. Castillo, E. Lizzarraga, J. Soria, P. Melin, F. Valdez, New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 294, 203–215 (2015)
L. Amador-Angulo, O. Mendoza, J.R. Castro, A. Rodriguez-Diaz, P. Melin, O. Castillo, Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16(9), 1458 (2016)
F. Valdez, J.C. Vazquez, P. Melin, O. Castillo, Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52, 1070–1083 (2017)
M. Guerrero, F. Valdez, O. Castillo, Comparative study between type-1 and interval type-2 fuzzy systems in parameter adaptation for the cuckoo search algorithm. Symmetry 14, 2289 (2022). https://doi.org/10.3390/SYM14112289
F. Cuevas, O. Castillo, P. Cortés-Antonio, Generalized type-2 fuzzy parameter adaptation in the marine predator algorithm for fuzzy controller parameterization in mobile robots. Symmetry 14, 859 (2022). https://doi.org/10.3390/SYM14050859
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Barraza, J., Rodriguez, L., Valdez, F., Melin, P., Castillo, O. (2024). A Hybrid Fuzzy Fireworks and Grey Wolf Metaheuristic Algorithm. In: Melin, P., Castillo, O. (eds) New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms. Studies in Computational Intelligence, vol 1146. Springer, Cham. https://doi.org/10.1007/978-3-031-53713-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-53713-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53712-7
Online ISBN: 978-3-031-53713-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)