Nothing Special   »   [go: up one dir, main page]

Skip to main content

Performance Analysis on a Coupled System of Gas Turbine and Air Cycle Driven by the Waste Heat of Flue Gas

  • Conference paper
  • First Online:
6GN for Future Wireless Networks (6GN 2023)

Abstract

In this work, a novel gas-air combined cycle of power generation system is proposed to enhance the generation capability of gas turbines, which uses the Ericsson cycle to transform gas turbine waste energy into a more useful form of energy. In this paper, the temperature-entropy diagram of the combined system is given, and the gas-air combined cycle system is built and simulated. After validation of the simulation, the effects of air flow, ambient temperature, pressure ratio and gas turbine load on the power generation capability and energy utilization efficiency are investigated. The results show that the air circle greatly improves the overall power generation efficiency with the same gas supply. The maximum power generation efficiency of the gas-air combined cycle is 31.95% at the rated load of the gas turbine with an optimized air flow of 14 kg/s, in which the power generation efficiency of the air cycle is 4.47%. The increase of air flow rate can improve the net output power, while the power generation efficiency of air circle and combined circle all increases first and then decreases. As the increase of pressure ratio of compressors, the power generation efficiency increases first and then decreases, while the energy utilization efficiency increases significantly with the decreasing of outlet temperature of smoke from the high-pressure heater and low-pressure heater. The ambient temperature effects on the power generation of the air circle and the combined circle are almost linear. The generation efficiency of the air circle and combined circle are all increased with the increase of gas turbine load. Therefore, under the selection of suitable working conditions, the gas-air combined cycle power generation system can effectively improve the total power generation efficiency and has great potential in waste heat utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huisingh, D., Zhang, Z., Moore, J.C., Qiao, Q., Li, Q.: Recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modelling. J. Clean. Prod. 103(1), 1–12 (2015)

    Article  Google Scholar 

  2. Yue, T.-X., Zhao, M.-W., Zhang, X.-Y.: A high-accuracy method for filling voids on remotely sensed XCO2 surfaces and its verification. J. Clean. Product. 103, 819–827 (2015). https://doi.org/10.1016/j.jclepro.2014.08.080

    Article  Google Scholar 

  3. Johansson, V., et al.: Value of wind power – Implications from specific power. Energy 126(1), 352–360 (2017)

    Article  Google Scholar 

  4. Vargas, S.A., Esteves, G.R.T., Maçaira, P.M., Bastos, B.Q., Cyrino Oliveira, F.L., Souza, R.C.: Wind power generation: A review and a research agenda. J. Clean. Product. 218(1), 850–870 (2019)

    Google Scholar 

  5. Singh, G.K.: Solar power generation by PV (photovoltaic) technology: A review. Energy 53(1), 1–13 (2013)

    Article  Google Scholar 

  6. Hayat, M.B., Ali, D., Monyake, K.C., Alagha, L., Ahmed, N.: Solar energy—A look into power generation, challenges, and a solar-powered future. Int. J. Energy Res. 43(3), 1049–1067 (2019)

    Article  Google Scholar 

  7. Remeli, M.F., Kiatbodin, L., Singh, B., Verojporn, K., Date, A., Akbarzadeh, A.: Power generation from waste heat using heat pipe and thermoelectric generator. Energy Procedia 75(1), 645–650 (2015)

    Article  Google Scholar 

  8. Kanoglu, M., Dincer, I., Rosen, M.A.: Understanding energy and exergy efficiencies for improved energy management in power plants. Energy Policy 35(7), 3967–3978 (2007)

    Article  Google Scholar 

  9. Cormos, C.-C.: Hydrogen and power co-generation based on coal and biomass/solid wastes co-gasification with carbon capture and storage. Int. J. Hydrogen Energy 37(7), 5637–5648 (2012)

    Article  Google Scholar 

  10. Toledo, O.M., Oliveira Filho, D., Diniz, A.S.A.C.: Distributed photovoltaic generation and energy storage systems: A review. Renew. Sustain. Energy Reviews 14(1), 506–511 (2010)

    Google Scholar 

  11. Wang, G., et al.: Key problems of gas-fired power plants participating in peak load regulation. In: H., Shiyan (eds.) International Conference on Energy Internet 2022, ICEI, pp. 147–152. Springer, Norway (2022)

    Google Scholar 

  12. Badran, O.O.: Gas-turbine performance improvements. Appl. Energy 64(1), 263–273 (1999)

    Article  Google Scholar 

  13. De Sa, A., Al Zubaidy, S.: Gas turbine performance at varying ambient temperature. Appl. Therm. Eng. 31(14), 2735–2739 (2011)

    Google Scholar 

  14. Liu, H., Qin, J., Ji, Z., Guo, F., Dong, P.: Study on the performance comparison of three configurations of aviation fuel cell gas turbine hybrid power generation system. J. Power Sources 501(1), 230007 (2021)

    Google Scholar 

  15. Kakaras, E., Doukelis, A., Leithner, R., Aronis, N.: Combined cycle power plant with integrated low temperature heat (LOTHECO). Appl. Therm. Eng. 24(11), 1677–1686 (2004)

    Article  Google Scholar 

  16. Samarasinghe, T., Abeykoon, C., Turan, A.: Modelling of heat transfer and fluid flow in the hot section of gas turbines used in power generation: A comprehensive survey. Int. J. Energy Res. 43(5), 1647–1669 (2019)

    Google Scholar 

  17. Imran, M., Haglind, F., Asim, M., Zeb Alvi, J.: Recent research trends in organic Rankine cycle technology: A bibliometric approach. Renew. Sustain. Energy Rev. 81(1), 552–562 (2018)

    Article  Google Scholar 

  18. Tchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G.: Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renew. Sustain. Energy Rev. 15(8), 3963–3979 (2011)

    Article  Google Scholar 

  19. Lecompte, S., Huisseune, H., van den Broek, M., Vanslambrouck, B., De Paepe, M.: Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 47(1), 448–461 (2015)

    Article  Google Scholar 

  20. Öhman, H.: Implementation and evaluation of a low-temperature waste heat recovery power cycle using NH3 in an Organic Rankine Cycle. Energy 48(1), 227–232 (2012)

    Article  Google Scholar 

  21. Song, J., Song, Y., Gu, C.: Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy 82, 976–985 (2015). https://doi.org/10.1016/j.energy.2015.01.108

    Article  Google Scholar 

  22. Wu, Z., Sha, L., Zhao, M., Wang, X., Ma, H., Zhang, Y.: Performance analyses and optimization of a reverse Carnot cycle-organic Rankine cycle dual-function system. Energy Convers. Manage. 212(1), 112787 (2020)

    Article  Google Scholar 

  23. Zhang, X., He, M., Zhang, Y.: A review of research on the Kalina cycle. Renew. Sustain. Energy Rev. 16(7), 5309–5318 (2012)

    Article  Google Scholar 

  24. Creyx, M., Delacourt, E., Lippert, M., Morin, C., Desmet, B.: Modélisation des performances d’un moteur Ericsson à cycle de Joule ouvert. Revista Termotehnica 1(1), 64–70 (2014)

    Google Scholar 

  25. Bǎdescu, V.: Optimum operation of a solar converter in combination with a Stirling or Ericsson heat engine. Energy 17(6), 601–607 (1992)

    Article  Google Scholar 

  26. Bonnet, S., Alaphilippe, M., Stouffs, P.: Energy, exergy and cost analysis of a micro-cogeneration system based on an Ericsson engine. Int. J. Therm. Sci. 44(12), 1161–1168 (2005)

    Article  Google Scholar 

  27. Shin, J.Y., Jeon, Y.J., Maeng, D.J., Kim, J.S., Ro, S.T.: Analysis of the dynamic characteristics of a combined-cycle power plant. Energy 27(12), 1085–1098 (2002)

    Article  Google Scholar 

  28. Poullikkas, A.: An overview of current and future sustainable gas turbine technologies. Renew. Sustain. Energy Rev. 9(5), 409–443 (2005)

    Article  Google Scholar 

  29. Arrieta, F.R.P., Lora, E.E.S.: Influence of ambient temperature on combined-cycle power-plant performance. Appl. Energy 80(3), 261–272 (2005)

    Article  Google Scholar 

  30. Sharma, M., Singh, O.: Thermodynamic study of multi-pressure HRSG in gas/steam combined cycle power plant. Journal of the Institution of Engineers (India): Series C 100(2), 361–369 (2019)

    Google Scholar 

  31. Bălănescu, D.-T., Homutescu, V.-M.: Performance analysis of a gas turbine combined cycle power plant with waste heat recovery in Organic Rankine Cycle. Procedia Manufac. 32(1), 520–528 (2019)

    Article  Google Scholar 

  32. Pilavachi, P.A.: Mini- and micro-gas turbines for combined heat and power. Appl. Therm. Eng. 22(18), 2003–2014 (2002)

    Article  Google Scholar 

  33. Schneider, T., Müller, D., Karl, J.: A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power. Renew. Sustain. Energy Rev. 134(1), 110288 (2020)

    Google Scholar 

  34. Invernizzi, C., Iora, P., Silva, P.: Bottoming micro-Rankine cycles for micro-gas turbines. Appl. Therm. Eng. 27(1), 100–110 (2007)

    Article  Google Scholar 

  35. Blank, D.A., Wu, C.: Power limit of an endoreversible Ericsson cycle with regeneration. Energy Convers. Manage. 37(1), 59–66 (1996)

    Article  Google Scholar 

  36. Moran, M., Shapiro, H.: Ericsson and stirling cycles. In: Fundamentals of Engineering Thermodynamics, pp. 550–553. Wiley, America (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongzhu Qiu or Jiakai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Yan, W., Qiu, Z., Fan, Y., Zheng, P., Zhang, J. (2024). Performance Analysis on a Coupled System of Gas Turbine and Air Cycle Driven by the Waste Heat of Flue Gas. In: Li, J., Zhang, B., Ying, Y. (eds) 6GN for Future Wireless Networks. 6GN 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-031-53401-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53401-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53400-3

  • Online ISBN: 978-3-031-53401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics