Nothing Special   »   [go: up one dir, main page]

Skip to main content

3D Spatial Information Reflected 2D Mapping for a Guide Dog Robot

  • Conference paper
  • First Online:
6GN for Future Wireless Networks (6GN 2023)

Abstract

This paper proposes a risk map generation method that considers the occupied space of objects and their characteristics. The objective is to guide visually impaired individuals safely to their intended destinations using a guide dog robot that can assist them in walking. The number of guide dogs in active service in Japan has been continuously declining, which has prompted the development of guide dog robots. The robot utilized in this study employs Mecanum wheels, the RoboSense RS-LiDAR-16 sensor, and Intel’s RealSense Depth Camera D435 to scan the surrounding environment and measure distance up to 150 m. To prevent visually impaired individuals from entering spaces potentially occupied by objects, the three-dimensional spatial information of the objects is projected onto a two-dimensional map, and object recognition is performed to project the potential risks of objects onto the map. The generated risk map is used to path planning that considers the risk levels established according to object properties. The effectiveness is proven by experiments of guiding visually impaired individuals to destinations while avoiding potential occupied spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Q., Chen, Y., Zhu, J., De Luca, G., Zhang, M., Guo, Y.: Traffic light and moving object detection for a guide-dog robot. J. Eng. 13, 675–678 (2020)

    Article  Google Scholar 

  2. Ichikawa, R., Zhang, B., Lim, H.O.:Voice expression system of visual environment for a guide dog robot. In: 2022 8th International Symposium on System Security, Safety, and Reliability (ISSSR), pp. 191–192. IEEE (2022)

    Google Scholar 

  3. Tan, H., et al.: Flying guide dog: Walkable path discovery for the visually impaired utilizing drones and transformer-based semantic segmentation. In: 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1123–1128. IEEE (2021)

    Google Scholar 

  4. Shoval, S., Borenstein, J., Koren, Y.: Mobile robot obstacle avoidance in a computerized travel aid for the blind. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 2023–2028. IEEE (1994)

    Google Scholar 

  5. Wang, L., Zhao, J., Zhang, L.: NavDog: robotic navigation guide dog via model predictive control and human-robot modeling. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 815–818 (2021)

    Google Scholar 

  6. Mitsou, N.C., Tzafestas, C.S.: Temporal occupancy grid for mobile robot dynamic environment mapping. In: 2007 Mediterranean Conference on Control & Automation, pp. 1–8. IEEE (2007)

    Google Scholar 

  7. Guerrero, L.A., Vasquez, F., Ochoa, S.F.: An indoor navigation system for the visually impaired. Sensors 12(6), 8236–8258 (2012)

    Article  Google Scholar 

  8. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278. IEEE (2016)

    Google Scholar 

  9. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toya Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aoki, T., Zhang, B., Lim, Ho. (2024). 3D Spatial Information Reflected 2D Mapping for a Guide Dog Robot. In: Li, J., Zhang, B., Ying, Y. (eds) 6GN for Future Wireless Networks. 6GN 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-031-53401-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53401-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53400-3

  • Online ISBN: 978-3-031-53401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics