Nothing Special   »   [go: up one dir, main page]

Skip to main content

Image Forgery Detection Using Cryptography and Deep Learning

  • Conference paper
  • First Online:
Big Data Technologies and Applications (BDTA 2023)

Abstract

The advancement of technology has undoubtedly exposed everyone to a remarkable array of visual imagery. Nowadays, digital technology is eating away the trust and historical confidence people have in the integrity of imagery. Deep learning is often used for the detection of forged digital images through the classification of images as original or forged. Despite many advantages of deep learning algorithms to predict fake images such as automatic feature engineering, parameter sharing and dimensionality reduction, one of the drawbacks of deep learning emanates from parsing bad examples to deep learning models. In this work, cryptography was applied to improve the integrity of images used for deep learning (Convolutional Neural Network - CNN) based prediction using SHA-256. Our results after a hashing algorithm was used at a threshold of 0.0003 gives 73.20% image prediction accuracy. The use of CNN algorithm on the hashing image dataset gives a prediction accuracy of 72.70% at 0.09 s. Furthermore, the result of CNN on the raw image dataset gives a prediction accuracy of 89.08% at 2 s. The result shows that although a higher prediction accuracy is obtained when the CNN algorithm is used on the raw image without hashing, the prediction using the CNN algorithm with hashing is faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Casia Dataset - https://www.kaggle.com/datasets/sophatvathana/casia-dataset.

  2. 2.

    ImageNet - https://www.image-net.org/.

References

  1. Ali, N.H.M., Mahdi, M.E.: Detecting similarity in color images based on perceptual image hash algorithm. IOP Conf. Ser.: Mater. Sci. Eng. 737(1), 012244 (2020). https://doi.org/10.1088/1757-899X/737/1/012244

  2. Ali, S.S., Baghel, V.S., Ganapathi, I.I., Prakash, S.: Robust biometric authentication system with a secure user template. Image Vis. Comput. 104, 104004 (2020). https://doi.org/10.1016/j.imavis.2020.104004

    Article  Google Scholar 

  3. Ali, S.S., Ganapathi, I.I., Vu, N.S., Ali, S.D., Saxena, N., Werghi, N.: Image forgery detection using deep learning by recompressing images. Electronics 11(3) (2022). https://doi.org/10.3390/electronics11030403

  4. Azure: Algorithm & component referencefor azure machine learning designer. Python SDK Azure-Ai-Ml V2 (2023)

    Google Scholar 

  5. Bi, X., et al.: D-Unet: a dual-encoder u-net for image splicing forgery detection and localization. CoRR abs/2012.01821 (2020). https://doi.org/10.48550/arXiv.2012.01821

  6. Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: Tampering detection and localization through clustering of camera-based CNN features. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1855–1864 (2017). https://doi.org/10.1109/CVPRW.2017.232

  7. Bunk, J., et al.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE Computer Society, Los Alamitos, CA, USA (2017). https://doi.org/10.1109/CVPRW.2017.235

  8. Chaitra, B., Reddy, P.B.: A study on digital image forgery techniques and its detection. In: 2019 International Conference on Contemporary Computing and Informatics (IC3I), pp. 127–130 (2019). https://doi.org/10.1109/IC3I46837.2019.9055573

  9. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012). https://doi.org/10.1109/TIFS.2012.2218597

    Article  Google Scholar 

  10. Devi Mahalakshmi, S., Vijayalakshmi, K., Priyadharsini, S.: Digital image forgery detection and estimation by exploring basic image manipulations. Digit. Investig. 8(3), 215–225 (2012). https://doi.org/10.1016/j.diin.2011.06.004

    Article  Google Scholar 

  11. Easow, S., Manikandan, D.L.C.: A study on image forgery detection techniques. Int. J. Comput. (IJC) 33(1), 84–81 (2019). https://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/1411

  12. Feng, W., Wu, S., Li, X., Kunkle, K.: A deep belief network based machine learning system for risky host detection. CoRR abs/1801.00025 (2018). https://doi.org/10.48550/arXiv.1801.00025

  13. Gadamsetty, S., Ch, R., Ch, A., Iwendi, C., Gadekallu, T.R.: Hash-based deep learning approach for remote sensing satellite imagery detection. Water 14(5) (2022). https://doi.org/10.3390/w14050707

  14. García, R., Algredo-Badillo, I., Morales-Sandoval, M., Feregrino-Uribe, C., Cumplido, R.: A compact FPGA-based processor for the secure hash algorithm SHA-256. Comput. Electr. Eng. 40(1), 194–202 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.014, 40th-year commemorative issue

  15. Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., De, D.: Fundamental concepts of convolutional neural network. In: Balas, V.E., Kumar, R., Srivastava, R. (eds.) Recent Trends and Advances in Artificial Intelligence and Internet of Things. ISRL, vol. 172, pp. 519–567. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32644-9_36

    Chapter  Google Scholar 

  16. Guan, Y., Li, S.E., Duan, J., Li, J., Ren, Y., Sun, Q., Cheng, B.: Direct and indirect reinforcement learning. Int. J. Intell. Syst. 36(8), 4439–4467 (2021). https://doi.org/10.1002/int.22466

    Article  Google Scholar 

  17. Habibi, M., Hassanpour, H.: Splicing image forgery detection and localization based on color edge inconsistency using statistical dispersion measures. Int. J. Eng. 34(2), 443–451 (2021). https://doi.org/10.5829/IJE.2021.34.02B.16

    Article  Google Scholar 

  18. Islam, A., Long, C., Basharat, A., Hoogs, A.: DOA-GAN: dual-order attentive generative adversarial network for image copy-move forgery detection and localization. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4675–4684 (2020). https://doi.org/10.1109/CVPR42600.2020.00473

  19. Karampidis, K., Papadourakis, G.: File type identification for digital forensics. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016. LNBIP, vol. 249, pp. 266–274. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39564-7_25

    Chapter  Google Scholar 

  20. Kester, Q.A., Nana, L., Pascu, A.C., Gire, S., Eghan, J.M., Quaynor, N.N.: A hybrid image cryptographic and spatial digital watermarking encryption technique for security and authentication of digital images. In: 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), pp. 322–326 (2015). https://doi.org/10.1109/UKSim.2015.85

  21. Kester, Q.A., Nana, L., Pascu, A.C., Gire, S., Eghan, J.M., Quaynor, N.N.: A novel hybrid discrete cosine transformation and visual cryptographic technique for securing digital images. In: 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), pp. 327–332 (2015). https://doi.org/10.1109/UKSim.2015.101

  22. Kumar, M., Soni, A., Shekhawat, A.R.S., Rawat, A.: Enhanced digital image and text data security using hybrid model of LSB steganography and AES cryptography technique. In: 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), pp. 1453–1457 (2022). https://doi.org/10.1109/ICAIS53314.2022.9742942

  23. Kuznetsov, A.: Digital image forgery detection using deep learning approach. J. Phys.: Conf. Ser. 1368(3), 032028 (2019). https://doi.org/10.1088/1742-6596/1368/3/032028

  24. Kwon, M.J., Yu, I.J., Nam, S.H., Lee, H.K.: CAT-Net: compression artifact tracing network for detection and localization of image splicing. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 375–384 (2021). https://doi.org/10.1109/WACV48630.2021.00042

  25. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. CoRR abs/1811.00656 (2018). https://doi.org/10.48550/arXiv.1811.00656

  26. Liu, X., Liu, Y., Chen, J., Liu, X.: PSCC-Net: progressive spatio-channel correlation network for image manipulation detection and localization. IEEE Trans. Cir. and Sys. for Video Technol. 32(11), 7505–7517 (2022). https://doi.org/10.1109/TCSVT.2022.3189545

  27. Mahdian, B., Saic, S.: Blind methods for detecting image fakery. In: 2008 42nd Annual IEEE International Carnahan Conference on Security Technology, pp. 280–286 (2008). https://doi.org/10.1109/CCST.2008.4751315

  28. Matern, F., Riess, C., Stamminger, M.: Gradient-based illumination description for image forgery detection. IEEE Trans. Inf. Forensics Secur. 15, 1303–1317 (2020). https://doi.org/10.1109/TIFS.2019.2935913

    Article  Google Scholar 

  29. Michelucci, U.: An introduction to autoencoders. CoRR abs/2201.03898 (2022). https://doi.org/10.48550/arXiv.2201.03898

  30. Okeyinka, A., Alao, O., Gbadamosi, B., Ogundokun, R., Oluwaseun, R.: Application of SHA-256 in formulation of digital signatures of RSA and Elgamal cryptosystems, pp. 61–66 (2018). https://api.semanticscholar.org/CorpusID:195800765

  31. Pierluigi, P.: Photo Forensics: detect photoshop manipulation with error level analysis (2023). https://resources.infosecinstitute.com/topic/error-level-analysis-detect-image-manipulation/

  32. Raja, A.: Active and passive detection of image forgery: A review analysis. IJERT-Proc 9(5), 418–424 (2021). https://www.ijert.org/research/active-and-passive-detection-of-image-forgery-a-review-analysis

  33. Ravi, J., Durga, M.G.S., Kartheek, Y.D.R.C., Begum, M.S., Raju, T., Raju, T.V.S.: Image fusion using non subsampled contourlet transform in medical field. Int. J. Eng. Adv. Technol. (IJEAT) 9(3), 3829–3832 (2020). https://doi.org/10.35940/ijeat.C6268.029320

  34. Salehinejad, H., Baarbe, J., Sankar, S., Barfett, J., Colak, E., Valaee, S.: Recent advances in recurrent neural networks. CoRR abs/1801.01078 (2018). https://doi.org/10.48550/arXiv.1801.01078

  35. Sharma, P., Kumar, M., Sharma, H.: Comprehensive analyses of image forgery detection methods from traditional to deep learning approaches: an evaluation. Multimedia Tools Appl. 82(12), 18117–18150 (2023). https://doi.org/10.1007/s11042-022-13808-w

    Article  Google Scholar 

  36. Shinde, P.P., Shah, S.: A review of machine learning and deep learning applications. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–6 (2018). https://doi.org/10.1109/ICCUBEA.2018.8697857

  37. Singh, A., Singh, J.: Image forgery detection using deep neural network. In: 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 504–509 (2021). https://doi.org/10.1109/SPIN52536.2021.9565953

  38. Stanton, J., Hirakawa, K., McCloskey, S.: Detecting image forgery based on color phenomenology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019). https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=dayton15574119887572 &disposition=inline

  39. Tang, Z., Li, X., Zhang, X., Zhang, S., Dai, Y.: Image hashing with color vector angle. Neurocomputing 308, 147–158 (2018). https://doi.org/10.1016/j.neucom.2018.04.057

    Article  Google Scholar 

  40. Verdoliva, L.: Media forensics and deepfakes: an overview. IEEE J. Selected Top. Signal Process. 14(5), 910–932 (2020). https://doi.org/10.1109/JSTSP.2020.3002101

    Article  Google Scholar 

  41. Wu, Y., AbdAlmageed, W., Natarajan, P.: ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9535–9544 (2019). https://doi.org/10.1109/CVPR.2019.00977

  42. Yousfi, Y., Fridrich, J.: An intriguing struggle of CNNs in JPEG steganalysis and the OneHot solution. IEEE Signal Process. Lett. 27, 830–834 (2020). https://doi.org/10.1109/LSP.2020.2993959

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehinde O. Babaagba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oke, A., Babaagba, K.O. (2024). Image Forgery Detection Using Cryptography and Deep Learning. In: Tan, Z., Wu, Y., Xu, M. (eds) Big Data Technologies and Applications. BDTA 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 555. Springer, Cham. https://doi.org/10.1007/978-3-031-52265-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52265-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52264-2

  • Online ISBN: 978-3-031-52265-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics