Abstract
The advancement of technology has undoubtedly exposed everyone to a remarkable array of visual imagery. Nowadays, digital technology is eating away the trust and historical confidence people have in the integrity of imagery. Deep learning is often used for the detection of forged digital images through the classification of images as original or forged. Despite many advantages of deep learning algorithms to predict fake images such as automatic feature engineering, parameter sharing and dimensionality reduction, one of the drawbacks of deep learning emanates from parsing bad examples to deep learning models. In this work, cryptography was applied to improve the integrity of images used for deep learning (Convolutional Neural Network - CNN) based prediction using SHA-256. Our results after a hashing algorithm was used at a threshold of 0.0003 gives 73.20% image prediction accuracy. The use of CNN algorithm on the hashing image dataset gives a prediction accuracy of 72.70% at 0.09 s. Furthermore, the result of CNN on the raw image dataset gives a prediction accuracy of 89.08% at 2 s. The result shows that although a higher prediction accuracy is obtained when the CNN algorithm is used on the raw image without hashing, the prediction using the CNN algorithm with hashing is faster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Casia Dataset - https://www.kaggle.com/datasets/sophatvathana/casia-dataset.
- 2.
ImageNet - https://www.image-net.org/.
References
Ali, N.H.M., Mahdi, M.E.: Detecting similarity in color images based on perceptual image hash algorithm. IOP Conf. Ser.: Mater. Sci. Eng. 737(1), 012244 (2020). https://doi.org/10.1088/1757-899X/737/1/012244
Ali, S.S., Baghel, V.S., Ganapathi, I.I., Prakash, S.: Robust biometric authentication system with a secure user template. Image Vis. Comput. 104, 104004 (2020). https://doi.org/10.1016/j.imavis.2020.104004
Ali, S.S., Ganapathi, I.I., Vu, N.S., Ali, S.D., Saxena, N., Werghi, N.: Image forgery detection using deep learning by recompressing images. Electronics 11(3) (2022). https://doi.org/10.3390/electronics11030403
Azure: Algorithm & component referencefor azure machine learning designer. Python SDK Azure-Ai-Ml V2 (2023)
Bi, X., et al.: D-Unet: a dual-encoder u-net for image splicing forgery detection and localization. CoRR abs/2012.01821 (2020). https://doi.org/10.48550/arXiv.2012.01821
Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: Tampering detection and localization through clustering of camera-based CNN features. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1855–1864 (2017). https://doi.org/10.1109/CVPRW.2017.232
Bunk, J., et al.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE Computer Society, Los Alamitos, CA, USA (2017). https://doi.org/10.1109/CVPRW.2017.235
Chaitra, B., Reddy, P.B.: A study on digital image forgery techniques and its detection. In: 2019 International Conference on Contemporary Computing and Informatics (IC3I), pp. 127–130 (2019). https://doi.org/10.1109/IC3I46837.2019.9055573
Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012). https://doi.org/10.1109/TIFS.2012.2218597
Devi Mahalakshmi, S., Vijayalakshmi, K., Priyadharsini, S.: Digital image forgery detection and estimation by exploring basic image manipulations. Digit. Investig. 8(3), 215–225 (2012). https://doi.org/10.1016/j.diin.2011.06.004
Easow, S., Manikandan, D.L.C.: A study on image forgery detection techniques. Int. J. Comput. (IJC) 33(1), 84–81 (2019). https://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/1411
Feng, W., Wu, S., Li, X., Kunkle, K.: A deep belief network based machine learning system for risky host detection. CoRR abs/1801.00025 (2018). https://doi.org/10.48550/arXiv.1801.00025
Gadamsetty, S., Ch, R., Ch, A., Iwendi, C., Gadekallu, T.R.: Hash-based deep learning approach for remote sensing satellite imagery detection. Water 14(5) (2022). https://doi.org/10.3390/w14050707
García, R., Algredo-Badillo, I., Morales-Sandoval, M., Feregrino-Uribe, C., Cumplido, R.: A compact FPGA-based processor for the secure hash algorithm SHA-256. Comput. Electr. Eng. 40(1), 194–202 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.014, 40th-year commemorative issue
Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., De, D.: Fundamental concepts of convolutional neural network. In: Balas, V.E., Kumar, R., Srivastava, R. (eds.) Recent Trends and Advances in Artificial Intelligence and Internet of Things. ISRL, vol. 172, pp. 519–567. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32644-9_36
Guan, Y., Li, S.E., Duan, J., Li, J., Ren, Y., Sun, Q., Cheng, B.: Direct and indirect reinforcement learning. Int. J. Intell. Syst. 36(8), 4439–4467 (2021). https://doi.org/10.1002/int.22466
Habibi, M., Hassanpour, H.: Splicing image forgery detection and localization based on color edge inconsistency using statistical dispersion measures. Int. J. Eng. 34(2), 443–451 (2021). https://doi.org/10.5829/IJE.2021.34.02B.16
Islam, A., Long, C., Basharat, A., Hoogs, A.: DOA-GAN: dual-order attentive generative adversarial network for image copy-move forgery detection and localization. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4675–4684 (2020). https://doi.org/10.1109/CVPR42600.2020.00473
Karampidis, K., Papadourakis, G.: File type identification for digital forensics. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016. LNBIP, vol. 249, pp. 266–274. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39564-7_25
Kester, Q.A., Nana, L., Pascu, A.C., Gire, S., Eghan, J.M., Quaynor, N.N.: A hybrid image cryptographic and spatial digital watermarking encryption technique for security and authentication of digital images. In: 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), pp. 322–326 (2015). https://doi.org/10.1109/UKSim.2015.85
Kester, Q.A., Nana, L., Pascu, A.C., Gire, S., Eghan, J.M., Quaynor, N.N.: A novel hybrid discrete cosine transformation and visual cryptographic technique for securing digital images. In: 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), pp. 327–332 (2015). https://doi.org/10.1109/UKSim.2015.101
Kumar, M., Soni, A., Shekhawat, A.R.S., Rawat, A.: Enhanced digital image and text data security using hybrid model of LSB steganography and AES cryptography technique. In: 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), pp. 1453–1457 (2022). https://doi.org/10.1109/ICAIS53314.2022.9742942
Kuznetsov, A.: Digital image forgery detection using deep learning approach. J. Phys.: Conf. Ser. 1368(3), 032028 (2019). https://doi.org/10.1088/1742-6596/1368/3/032028
Kwon, M.J., Yu, I.J., Nam, S.H., Lee, H.K.: CAT-Net: compression artifact tracing network for detection and localization of image splicing. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 375–384 (2021). https://doi.org/10.1109/WACV48630.2021.00042
Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. CoRR abs/1811.00656 (2018). https://doi.org/10.48550/arXiv.1811.00656
Liu, X., Liu, Y., Chen, J., Liu, X.: PSCC-Net: progressive spatio-channel correlation network for image manipulation detection and localization. IEEE Trans. Cir. and Sys. for Video Technol. 32(11), 7505–7517 (2022). https://doi.org/10.1109/TCSVT.2022.3189545
Mahdian, B., Saic, S.: Blind methods for detecting image fakery. In: 2008 42nd Annual IEEE International Carnahan Conference on Security Technology, pp. 280–286 (2008). https://doi.org/10.1109/CCST.2008.4751315
Matern, F., Riess, C., Stamminger, M.: Gradient-based illumination description for image forgery detection. IEEE Trans. Inf. Forensics Secur. 15, 1303–1317 (2020). https://doi.org/10.1109/TIFS.2019.2935913
Michelucci, U.: An introduction to autoencoders. CoRR abs/2201.03898 (2022). https://doi.org/10.48550/arXiv.2201.03898
Okeyinka, A., Alao, O., Gbadamosi, B., Ogundokun, R., Oluwaseun, R.: Application of SHA-256 in formulation of digital signatures of RSA and Elgamal cryptosystems, pp. 61–66 (2018). https://api.semanticscholar.org/CorpusID:195800765
Pierluigi, P.: Photo Forensics: detect photoshop manipulation with error level analysis (2023). https://resources.infosecinstitute.com/topic/error-level-analysis-detect-image-manipulation/
Raja, A.: Active and passive detection of image forgery: A review analysis. IJERT-Proc 9(5), 418–424 (2021). https://www.ijert.org/research/active-and-passive-detection-of-image-forgery-a-review-analysis
Ravi, J., Durga, M.G.S., Kartheek, Y.D.R.C., Begum, M.S., Raju, T., Raju, T.V.S.: Image fusion using non subsampled contourlet transform in medical field. Int. J. Eng. Adv. Technol. (IJEAT) 9(3), 3829–3832 (2020). https://doi.org/10.35940/ijeat.C6268.029320
Salehinejad, H., Baarbe, J., Sankar, S., Barfett, J., Colak, E., Valaee, S.: Recent advances in recurrent neural networks. CoRR abs/1801.01078 (2018). https://doi.org/10.48550/arXiv.1801.01078
Sharma, P., Kumar, M., Sharma, H.: Comprehensive analyses of image forgery detection methods from traditional to deep learning approaches: an evaluation. Multimedia Tools Appl. 82(12), 18117–18150 (2023). https://doi.org/10.1007/s11042-022-13808-w
Shinde, P.P., Shah, S.: A review of machine learning and deep learning applications. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–6 (2018). https://doi.org/10.1109/ICCUBEA.2018.8697857
Singh, A., Singh, J.: Image forgery detection using deep neural network. In: 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 504–509 (2021). https://doi.org/10.1109/SPIN52536.2021.9565953
Stanton, J., Hirakawa, K., McCloskey, S.: Detecting image forgery based on color phenomenology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019). https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=dayton15574119887572 &disposition=inline
Tang, Z., Li, X., Zhang, X., Zhang, S., Dai, Y.: Image hashing with color vector angle. Neurocomputing 308, 147–158 (2018). https://doi.org/10.1016/j.neucom.2018.04.057
Verdoliva, L.: Media forensics and deepfakes: an overview. IEEE J. Selected Top. Signal Process. 14(5), 910–932 (2020). https://doi.org/10.1109/JSTSP.2020.3002101
Wu, Y., AbdAlmageed, W., Natarajan, P.: ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9535–9544 (2019). https://doi.org/10.1109/CVPR.2019.00977
Yousfi, Y., Fridrich, J.: An intriguing struggle of CNNs in JPEG steganalysis and the OneHot solution. IEEE Signal Process. Lett. 27, 830–834 (2020). https://doi.org/10.1109/LSP.2020.2993959
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Oke, A., Babaagba, K.O. (2024). Image Forgery Detection Using Cryptography and Deep Learning. In: Tan, Z., Wu, Y., Xu, M. (eds) Big Data Technologies and Applications. BDTA 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 555. Springer, Cham. https://doi.org/10.1007/978-3-031-52265-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-52265-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52264-2
Online ISBN: 978-3-031-52265-9
eBook Packages: Computer ScienceComputer Science (R0)