Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparing Stochastic Optimization Methods for Multi-robot, Multi-target Tracking

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 28))

Included in the following conference series:

Abstract

This paper compares different distributed control approaches which enable a team of robots search for and track an unknown number of targets. The robots are equipped with sensors which have a limited field of view (FoV) and they are required to explore the environment. The team uses a distributed formulation of the Probability Hypothesis Density (PHD) filter to estimate the number and the position of the targets. The resulting target estimate is used to select the subsequent search locations for each robot. This paper compares Lloyd’s algorithm, a traditional method for distributed search, with two typical stochastic optimization methods: Particle Swarm Optimization (PSO) and Simulated Annealing (SA). This paper presents novel formulations of PSO and SA to solve the multi-target tracking problem, which more effectively trade off between exploration and exploitation. Simulations demonstrate that the use of these stochastic optimization techniques improves coverage of the search space and reduces the error in the target estimates compared to the baseline approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This assumes that, per the note in Algorithm 1, line 2, the Voronoi computations are combined with the distributed PHD filter step.

References

  1. Blackman, S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19(1), 5–18 (2004). https://doi.org/10.1109/MAES.2004.1263228

    Article  Google Scholar 

  2. Chen, J., Xie, Z., Dames, P.: The semantic PHD filter for multi-class target tracking: From theory to practice. Robot. Autonomous Syst. 149 (2022). https://doi.org/10.1016/j.robot.2021.103947

  3. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004). https://doi.org/10.1109/TRA.2004.824698

    Article  Google Scholar 

  4. Dames, P., Kumar, V.: Autonomous localization of an unknown number of targets without data association using teams of mobile sensors. IEEE Trans. Autom. Sci. Eng. 12(3), 850–864 (2015). https://doi.org/10.1109/tase.2015.2425212

    Article  Google Scholar 

  5. Dames, P., Kumar, V.: Experimental characterization of a bearing-only sensor for use with the phd filter (2015). https://doi.org/10.48550/arXiv.1502.04661

  6. Dames, P.M.: Distributed multi-target search and tracking using the PHD filter. Auton. Robot. 44, 673–689 (2020). https://doi.org/10.1007/s10514-019-09840-9

    Article  Google Scholar 

  7. Davis, L.: Bit-climbing, representational bias, and test suit design. In: Proc. Intl. Conf. Genetic Algorithm, 1991, pp. 18–23 (1991)

    Google Scholar 

  8. Derr, K., Manic, M.: Multi-robot, multi-target particle swarm optimization search in noisy wireless environments. In: 2009 2nd Conference on Human System Interactions, pp. 81–86 (2009). https://doi.org/10.1109/HSI.2009.5090958

  9. Deutsch, I., Liu, M., Siegwart, R.: A framework for multi-robot pose graph slam. In: 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 567–572 (2016). https://doi.org/10.1109/RCAR.2016.7784092

  10. Doitsidis, L., et al.: Optimal surveillance coverage for teams of micro aerial vehicles in gps-denied environments using onboard vision. Auton. Robot. 33(1), 173–188 (2012). https://doi.org/10.1007/s10514-012-9292-1

    Article  Google Scholar 

  11. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999). https://doi.org/10.1137/S0036144599352836

    Article  MathSciNet  Google Scholar 

  12. Fortmann, T., Bar-Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Oceanic Eng. 8(3), 173–184 (1983). https://doi.org/10.1109/JOE.1983.1145560

    Article  Google Scholar 

  13. Glover, F.: Tabu search-part i. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  MathSciNet  Google Scholar 

  14. Goldhoorn, A., Garrell, A., Alquézar, R., Sanfeliu, A.: Searching and tracking people with cooperative mobile robots. Auton. Robot. 42(4), 739–759 (2018). https://doi.org/10.1007/s10514-017-9681-6

    Article  Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 vol 4 (1995). https://doi.org/10.1109/ICNN.1995.488968

  16. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  17. Mahler, R.: Multitarget bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1152–1178 (2003). https://doi.org/10.1109/TAES.2003.1261119

    Article  Google Scholar 

  18. Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  19. Murphy, R.: Human-robot interaction in rescue robotics. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 34(2), 138–153 (2004). https://doi.org/10.1109/TSMCC.2004.826267

  20. Qie, H., Shi, D., Shen, T., Xu, X., Li, Y., Wang, L.: Joint optimization of multi-uav target assignment and path planning based on multi-agent reinforcement learning. IEEE Access 7, 146264–146272 (2019). https://doi.org/10.1109/ACCESS.2019.2943253

    Article  Google Scholar 

  21. Rizk, Y., Awad, M., Tunstel, E.W.: Decision making in multiagent systems: a survey. IEEE Trans. Cognitive Developmental Syst. 10(3), 514–529 (2018). https://doi.org/10.1109/TCDS.2018.2840971

    Article  Google Scholar 

  22. Robin, C., Lacroix, S.: Multi-robot target detection and tracking: taxonomy and survey. Auton. Robot. 40(4), 729–760 (2016)

    Article  Google Scholar 

  23. Schuhmacher, D., Vo, B.T., Vo, B.N.: A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 56(8), 3447–3457 (2008). https://doi.org/10.1109/TSP.2008.920469

    Article  MathSciNet  Google Scholar 

  24. Shi, W., He, Z., Tang, W., Liu, W., Ma, Z.: Path planning of multi-robot systems with boolean specifications based on simulated annealing. IEEE Robot. Autom. Lett. 7, 6091–6098 (2022). https://doi.org/10.1109/LRA.2022.3165184

    Article  Google Scholar 

  25. Stone, L.D., Streit, R.L., Corwin, T.L., Bell, K.L.: Bayesian multiple target tracking. Artech House (2013)

    Google Scholar 

  26. Tang, Q., Yu, F., Xu, Z., Eberhard, P.: Swarm robots search for multiple targets. IEEE Access 8, 92814–92826 (2020). https://doi.org/10.1109/ACCESS.2020.2994151

    Article  Google Scholar 

  27. Vo, B.N., Ma, W.K.: The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54(11), 4091–4104 (2006)

    Article  Google Scholar 

  28. Vo, B.N., Singh, S., Doucet, A.: Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1224–1245 (2005)

    Article  Google Scholar 

  29. Wang, B.: Coverage problems in sensor networks: A survey. ACM Comput. Surv. 43(4) (2011). https://doi.org/10.1145/1978802.1978811

  30. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with limited communication. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13, pp. 1101–1108. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2013)

    Google Scholar 

Download references

Acknowledgement

This work was funded by NSF grants IIS-1830419 and CNS-2143312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Dames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xin, P., Dames, P. (2024). Comparing Stochastic Optimization Methods for Multi-robot, Multi-target Tracking. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_27

Download citation

Publish with us

Policies and ethics