Nothing Special   »   [go: up one dir, main page]

Skip to main content

MARLAS: Multi Agent Reinforcement Learning for Cooperated Adaptive Sampling

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 28))

Included in the following conference series:

Abstract

The multi-robot adaptive sampling problem aims at finding trajectories for a team of robots to efficiently sample the phenomenon of interest within a given endurance budget of the robots. In this paper, we propose a robust and scalable approach using Multi-Agent Reinforcement Learning for cooperated Adaptive Sampling (MARLAS) of quasi-static environmental processes. Given a prior on the field being sampled, the proposed method learns decentralized policies for a team of robots to sample high-utility regions within a fixed budget. The multi-robot adaptive sampling problem requires the robots to coordinate with each other to avoid overlapping sampling trajectories. Therefore, we encode the estimates of neighbor positions and intermittent communication between robots into the learning process. We evaluated MARLAS over multiple performance metrics and found it to outperform other baseline multi-robot sampling techniques. Additionally, we demonstrate scalability with both the size of the robot team and the size of the region being sampled. We further demonstrate robustness to communication failures and robot failures. The experimental evaluations are conducted both in simulations on real data and in real robot experiments on demo environmental setup (The demo video can be accessed at: https://youtu.be/qRRpNC60KL4).

L. Pan and S. Manjanna—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Low, K.H., Dolan, J.M., Khosla, P.: Adaptive multi-robot wide-area exploration and mapping. In: Proceedings of the 7th international joint conference on Autonomous agents and Multiagent Systems Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, pp. 23–30 (2008)

    Google Scholar 

  2. Sadat, S.A., Wawerla, J., Vaughan, R.: Fractal trajectories for online non-uniform aerial coverage. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2971–2976. IEEE (2015)

    Google Scholar 

  3. Manjanna, S., Van Hoof, H., Dudek, G.: Policy search on aggregated state space for active sampling. In: Xiao, J., Kröger, T., Khatib, O. (eds.) ISER 2018. SPAR, vol. 11, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33950-0_19

    Chapter  Google Scholar 

  4. Almadhoun, R., Taha, T., Seneviratne, L., Zweiri, Y.: A survey on multi-robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 1(8), 1–24 (2019)

    Article  Google Scholar 

  5. Salam, T., Hsieh, M.A.: Adaptive sampling and reduced-order modeling of dynamic processes by robot teams. IEEE Robot. Autom. Lett. 4(2), 477–484 (2019)

    Article  Google Scholar 

  6. Venkataramani, R., Bresler, Y.: Perfect reconstruction formulas and bounds on aliasing error in sub-nyquist nonuniform sampling of multiband signals. IEEE Trans. Inf. Theory 46(6), 2173–2183 (2000)

    Article  MathSciNet  Google Scholar 

  7. Rahimi, M., Hansen, M., Kaiser, W.J., Sukhatme, G.S., Estrin, D.: Adaptive sampling for environmental field estimation using robotic sensors. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3692–3698. IEEE (2005)

    Google Scholar 

  8. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  9. Durham, J.W., Carli, R., Frasca, P., Bullo, F.: Discrete partitioning and coverage control for gossiping robots. IEEE Trans. Rob. 28(2), 364–378 (2011)

    Article  Google Scholar 

  10. Aurenhammer, F.: Voronoi diagrams-a survey of a fundamental geometric data structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)

    Article  Google Scholar 

  11. Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4982–4989. IEEE (2010)

    Google Scholar 

  12. Mishra, M., Poddar, P., Chen, J., Tokekar, P., Sujit, P.: Galopp: multi-agent deep reinforcement learning for persistent monitoring with localization constraints, arXiv preprint arXiv:2109.06831 (2021)

  13. Chen, J., Baskaran, A., Zhang, Z., Tokekar, P.: Multi-agent reinforcement learning for visibility-based persistent monitoring. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2563–2570. IEEE (2021)

    Google Scholar 

  14. Kantaros, Y., Schlotfeldt, B., Atanasov, N., Pappas, G.J.: Sampling-based planning for non-myopic multi-robot information gathering. Auton. Robot. 45(7), 1029–1046 (2021)

    Article  Google Scholar 

  15. Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: DARP: divide areas algorithm for optimal multi-robot coverage path planning. J. Intell. Robot. Syst. 86(3), 663–680 (2017)

    Article  Google Scholar 

  16. Hsu, C.D., Jeong, H., Pappas, G.J., Chaudhari, P.: Scalable reinforcement learning policies for multi-agent control. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4785–4791. IEEE (2021)

    Google Scholar 

  17. Dibangoye, J.S., Amato, C., Buffet, O., Charpillet, F.: Optimally solving Dec-POMDPs as continuous-state MDPs. J. Artif. Intell. Rese. 55, 443–497 (2016)

    Article  MathSciNet  Google Scholar 

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles. Springer, New York, NY (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

  19. Manjanna, S., Hsieh, M.A., Dudek, G.: Scalable multi-robot system for non-myopic spatial sampling, arXiv preprint arXiv:2105.10018 (2021)

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  21. Dai, C., Zhao, M.: Nonlinear analysis in a nutrient-algae-zooplankton system with sinking of algae. In: Abstract and Applied Analysis, vol. 2014. Hindawi (2014)

    Google Scholar 

  22. Meghjani, M., Manjanna, S., Dudek, G.: Multi-target rendezvous search. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2596–2603. IEEE (2016)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of NSF IIS 1812319 and ARL DCIST CRA W911NF-17-2-0181.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lishuo Pan , Sandeep Manjanna or M. Ani Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, L., Manjanna, S., Hsieh, M.A. (2024). MARLAS: Multi Agent Reinforcement Learning for Cooperated Adaptive Sampling. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_25

Download citation

Publish with us

Policies and ethics