Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reduction of Binary Attributes: Rough Set Theory Versus Formal Concept Analysis

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2023)

Abstract

The paper compares the concepts of reduction of binary attributes in rough set theory (RST) and the reduction of unary attributes or dychotomic attributes in formal concept analysis (FCA). We present some basics of both theories together with a brief presentation of elements of the theory of set spaces used in the paper as a platform for mentioned comparison. Then we deliver some results on binary attribute reduction in RST and attribute reduction in FCA. We characterize independence of sets of binary attributes in RST by complete algebras of sets completely generated by completely irredundant families of sets. Then by means of complete algebras of sets and indiscernibility relations with respect to families of sets we investigate some families of FCA-attributes. And finally we present some formal context for which we prove that RST-binary attribute reduction and FCA-unary attribute reduction give the same results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Amsterdam (2003)

    Google Scholar 

  2. Fedrizzi, M., Kacprzyk, J., Nurmi, H.: How different are social choice functions: a rough sets approach. Qual. Quant. Int. J. Methodol. 30(1), 87–99 (1996)

    Article  Google Scholar 

  3. Fishburn, P.C.: The Theory of Social Choice functions. Princeton University Press, Princeton (1973)

    Google Scholar 

  4. Fishburn, P.C.: Social choice functions. Soc. Ind. Appl. Math. Rev. 16(1), 63–90 (1974)

    MathSciNet  Google Scholar 

  5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  Google Scholar 

  6. Kacprzyk, J.: Group decision making with a fuzzy majority. Fuzzy Sets Syst. 18, 105–118 (1986)

    Article  MathSciNet  Google Scholar 

  7. Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst. 49, 21–31 (1992)

    Article  MathSciNet  Google Scholar 

  8. Kacprzyk, J., Merigó, J.M., Nurmi, H., Zadrożny, S.: Multi-agent systems and voting: how similar are voting procedures. In: Lesot, M.-J., et al. (eds.) IPMU 2020. CCIS, vol. 1237, pp. 172–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50146-4_14

    Chapter  Google Scholar 

  9. Kacprzyk, J., Nurmi, H., Zadrożny, S.: Reason vs. rationality: from rankings to tournaments in individual choice. In: Mercik, J. (ed.) Transactions on Computational Collective Intelligence XXVII. LNCS, vol. 10480, pp. 28–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70647-4_2

    Chapter  Google Scholar 

  10. Kacprzyk, J., Nurmi, H., Zadrozny, S.: Towards a comprehensive similarity analysis of voting procedures using rough sets and similarity measures. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems - Professor Zdzislaw Pawlak in Memoriam. Intelligent Systems Reference Library, vol. 42, pp. 359–380. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30344-9_13

    Chapter  Google Scholar 

  11. Kacprzyk, J., Zadrozny, S.: Towards a general and unified characterization of individual and collective choice functions under fuzzy and nonfuzzy preferences and majority via the ordered weighted average operators. Int. J. Intell. Syst. 24, 4–26 (2009)

    Article  Google Scholar 

  12. Kacprzyk, J., Zadrozny, S.: Towards human consistent data driven decision support systems using verbalization of data mining results via linguistic data summaries. Bull. Polish Acad. Sci. Techn. Sci. 58(3), 359–370 (2010)

    Google Scholar 

  13. Kelly, J.S.: Social Choice Theory. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-662-09925-4

    Book  Google Scholar 

  14. Lin, T.Y., Liau, C.J., Kacprzyk, J. (eds.): Granular, Fuzzy, and Soft Computing: A Volume in the Encyclopedia of Complexity and Systems Science Series. 1st edn. Springer, Cham (2023)

    Google Scholar 

  15. Lipski, W.: Informational systems with incomplete information. In: 3rd International Symposium on Automata, Languages and Programming, Edinburgh, Scotland, pp. 120–130 (1976)

    Google Scholar 

  16. Nurmi, H.: Comparing Voting Systems. D. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  17. Nurmi, H.: Voting Paradoxes and How to Deal With Them. Springer, Heidelberg (1999)

    Book  Google Scholar 

  18. Nurmi, H.: The choice of voting rules based on preferences over criteria. In: Kamiński, B., Kersten, G.E., Szapiro, T. (eds.) GDN 2015. LNBIP, vol. 218, pp. 241–252. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19515-5_19

    Chapter  Google Scholar 

  19. Nurmi, H., Kacprzyk, J.: On fuzzy tournaments and their solution concepts in group decision making. Eur. J. Oper. Res. 51(2), 223–232 (1991)

    Article  Google Scholar 

  20. Nurmi, H., Kacprzyk, J., Zadrożny, S.: Voting systems in theory and practice. In: Szapiro, T., Kacprzyk, J. (eds.) Collective Decisions: Theory, Algorithms And Decision Support Systems. SSDC, vol. 392, pp. 3–16. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84997-9_1

    Chapter  Google Scholar 

  21. Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoret. Comput. Sci. 29, 27–39 (1984)

    Article  MathSciNet  Google Scholar 

  22. Pawlak, Z.: Information systems - theoretical foundations. Inf. Syst. 6, 205–218 (1981)

    Article  Google Scholar 

  23. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 18, 341–356 (1982)

    Article  Google Scholar 

  24. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  25. Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook on Granular Computing. Wiley, New York (2009)

    Google Scholar 

  26. Rauszer, C., Skowron, A.: The discernibility matrices and functions in information systems. In: R. Słowiński, (Ed.) Intelligent Decision Support. Handbook of Applications and Advances in the Rough Set Theory, pp. 331–362. Kluwer (1991)

    Google Scholar 

  27. Stumme, G.: Conceptual knowledge discovery and data mining with formal concept analysis. Tutorial slides at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases ECML/PKDD’2002

    Google Scholar 

  28. Wasilewski, P.: Dependency and supervenience. In: L. Czaja (ed.) Proceedings of the Concurrence, Specifiation and Programming (CS &P’2003), vol. 2, pp. 550–560. University of Warsaw Press (2003)

    Google Scholar 

  29. Wasilewski, P.: On selected similarity relations and their applications into cognitive science (in Polish). Unpublished doctoral dissertation, Jagiellonian University: Department of Logic, Krakow, Poland (2004)

    Google Scholar 

  30. Wasilewski, P.: Concept lattices vs. approximation spaces. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 114–123. Springer, Heidelberg (2005). https://doi.org/10.1007/11548669_12

    Chapter  Google Scholar 

  31. Wasilewski, P.: Algebras of definable sets vs. concept lattices. Fundamenta Informaticae 167(3), 235–256 (2019)

    Article  MathSciNet  Google Scholar 

  32. Wasilewski, P. Kacprzyk, J., Zadrozny, S.: On some concept lattice of social choice functions. In: M. Paprzycki (ed.) Proceedings of 18th Conference on Computer Sciences and Intelligent Systems FedCSIS 2023 (2023)

    Google Scholar 

  33. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. NATO Advanced Study Institutes Series, vol. 83, pp. 445–470. Reidel, Dordrecht (1982)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Wasilewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wasilewski, P., Kacprzyk, J., Zadrożny, S. (2023). Reduction of Binary Attributes: Rough Set Theory Versus Formal Concept Analysis. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50959-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50958-2

  • Online ISBN: 978-3-031-50959-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics