Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Hybrid Wind Speed Interval Prediction Model Using Rough Stacked Autoencoder and LSTM

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14481))

Included in the following conference series:

  • 395 Accesses

Abstract

Wind speed interval prediction is of great significance in power resource scheduling and planning. However, the complex and variable characteristics of wind speed make quality forecasting challenging. In this paper, a novel hybrid model, abbreviated as RSAE-LSTM, for wind speed interval prediction is proposed. The model employs a rough stacked autoencoder (RSAE) and long short-term memory neural network (LSTM). The RSAE initially handles uncertainties and extracts important potential features from the wind speed data. Then, the generated features are utilized as input to the LSTM network to construct the prediction intervals (PIs). Meanwhile, a new loss function is proposed for developing model to construct PIs effectively. The experimental results show that compared with the comparison methods, the proposed method could obtain high-quality PIs and achieve at least a 39% improvement in the coverage width criterion (CWC) index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://midcdmz.nrel.gov/apps/daily.pl?site=NWTC &live=1.

References

  1. Abdel-Aal, R.E., Elhadidy, M.A., Shaahid, S.: Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks. Renew. Energy 34(7), 1686–1699 (2009)

    Article  Google Scholar 

  2. Heskes, T.: Practical confidence and prediction intervals. In: Advances in Neural Information Processing Systems, vol. 9 (1996)

    Google Scholar 

  3. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  5. Jager, D., Andreas, A.: NREL national wind technology center (NWTC): M2 tower; boulder, Colorado (data). Technical report, National Renewable Energy Lab. (NREL), Golden, CO (United States) (1996)

    Google Scholar 

  6. Jaseena, K., Kovoor, B.C.: A hybrid wind speed forecasting model using stacked autoencoder and LSTM. J. Renew. Sustain. Energy 12(2) (2020)

    Google Scholar 

  7. Kabir, H.D., Khosravi, A., Kavousi-Fard, A., Nahavandi, S., Srinivasan, D.: Optimal uncertainty-guided neural network training. Appl. Soft Comput. 99, 106878 (2021)

    Article  Google Scholar 

  8. Khodayar, M., Kaynak, O., Khodayar, M.E.: Rough deep neural architecture for short-term wind speed forecasting. IEEE Trans. Industr. Inf. 13(6), 2770–2779 (2017)

    Article  Google Scholar 

  9. Khodayar, M., Saffari, M., Williams, M., Jalali, S.M.J.: Interval deep learning architecture with rough pattern recognition and fuzzy inference for short-term wind speed forecasting. Energy 254, 124143 (2022)

    Article  Google Scholar 

  10. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Networks 22(3), 337–346 (2010)

    Article  Google Scholar 

  11. Li, Y., Chen, X., Li, C., Tang, G., Gan, Z., An, X.: A hybrid deep interval prediction model for wind speed forecasting. IEEE Access 9, 7323–7335 (2020)

    Article  Google Scholar 

  12. Lingras, P.: Rough neural networks. In: Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems, pp. 1445–1450 (1996)

    Google Scholar 

  13. Liu, F., Li, C., Xu, Y., Tang, G., Xie, Y.: A new lower and upper bound estimation model using gradient descend training method for wind speed interval prediction. Wind Energy 24(3), 290–304 (2021)

    Article  Google Scholar 

  14. MacKay, D.J.: The evidence framework applied to classification networks. Neural Comput. 4(5), 720–736 (1992)

    Article  Google Scholar 

  15. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  16. Pearce, T., Brintrup, A., Zaki, M., Neely, A.: High-quality prediction intervals for deep learning: a distribution-free, ensembled approach. In: International Conference on Machine Learning, pp. 4075–4084. PMLR (2018)

    Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  18. Quan, H., Srinivasan, D., Khosravi, A.: Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 303–315 (2013)

    Article  Google Scholar 

  19. Saeed, A., Li, C., Gan, Z.: Short-term wind speed interval prediction using lube based quasi-recurrent neural network. In: Journal of Physics: Conference Series, vol. 2189, p. 012015. IOP Publishing (2022)

    Google Scholar 

  20. Zhang, Y., Pan, G., Chen, B., Han, J., Zhao, Y., Zhang, C.: Short-term wind speed prediction model based on GA-ANN improved by VMD. Renew. Energy 156, 1373–1388 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62233018, 62136002, 62221005), and the Natural Science Foundation of Chongqing (cstc2022ycjh-bgzxm0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mei, Q., Yu, H., Wang, G. (2023). A Novel Hybrid Wind Speed Interval Prediction Model Using Rough Stacked Autoencoder and LSTM. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50959-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50958-2

  • Online ISBN: 978-3-031-50959-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics