Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Neighbor Aggregation Function for Medical Point Cloud Analysis

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14498))

Included in the following conference series:

Abstract

Point cloud analysis is a technique that performs analysis and processing of point cloud data. In the medical field, point cloud analysis has been widely used. However, the existing common neighbor aggregation module in point cloud analysis networks can only aggregate some of the neighbor features, which will lead to the omission of valid information and affect the performance of point cloud analysis, which may lead to serious consequences in the medical diagnosis process. In this paper, we improve the ability of point cloud analysis networks to extract complex biological structures by improving the neighbor aggregation module in point cloud analysis. Specifically, we enable the module to efficiently extract more adequate information by softening the max pooling function commonly used in the neighbor aggregation module. In particular, we improve 2.18% IoU on the IntrA dataset compared to the previous state-of-the-art method, and we also surpass the previous state-of-the-art method on the S3DIS dataset. Code is available at https://github.com/wfan1203/PointSWT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S.G., et al.: Cost-effective broad learning-based ultrasound biomicroscopy with 3d reconstruction for ocular anterior segmentation. Multimed. Tools Appl. 80, 35105–35122 (2020). https://api.semanticscholar.org/CorpusID:221110873

  2. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d–3d-semantic data for indoor scene understanding. CoRR abs/1702.01105 (2017)

    Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4338–4364 (2019)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: CVPR, pp. 11105–11114 (2020)

    Google Scholar 

  7. Hu, R., Liu, Y., Gu, K., Min, X., Zhai, G.: Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. (2021)

    Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: DUNet: a deformable network for retinal vessel segmentation. Knowl.-Based Syst. 178, 149–162 (2019)

    Article  Google Scholar 

  10. Kamel, A., Sheng, B., Li, P., Kim, J., Feng, D.D.: Efficient body motion quantification and similarity evaluation using 3-d joints skeleton coordinates. IEEE Trans. Syst. Man Cybern.: Syst. 51, 2774–2788 (2021). https://api.semanticscholar.org/CorpusID:189977703

  11. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Li, G., Müller, M., Thabet, A.K., Ghanem, B.: DeepGCNs: can GCNs go as deep as CNNs? In: ICCV, pp. 9266–9275 (2019)

    Google Scholar 

  14. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: NeurIPS, pp. 828–838 (2018)

    Google Scholar 

  15. Lin, H., et al.: Meta architecure for point cloud analysis. ArXiv: abs/2211.14462 (2022)

  16. Liu, Y., Gu, K., Li, X., Zhang, Y.: Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(3), 1–91 (2020)

    Article  Google Scholar 

  17. Liu, Y., Gu, K., Wang, S., Zhao, D., Gao, W.: Blind quality assessment of camera images based on low-level and high-level statistical features. IEEE Trans. Multimed. 21(1), 135–146 (2018)

    Article  Google Scholar 

  18. Liu, Y., Gu, K., Zhai, G., Liu, X., Zhao, D., Gao, W.: Quality assessment for real out-of-focus blurred images. J. Vis. Commun. Image Represent. 46, 70–80 (2017)

    Article  Google Scholar 

  19. Liu, Y., et al.: Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circuits Syst. Video Technol. 30(4), 929–943 (2019)

    Article  Google Scholar 

  20. Liu, Y., Zhai, G., Gu, K., Liu, X., Zhao, D., Gao, W.: Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Trans. Multimed. 20(2), 379–391 (2017)

    Article  Google Scholar 

  21. Liu, Z., Hu, H., Cao, Y., Zhang, Z., Tong, X.: A closer look at local aggregation operators in point cloud analysis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 326–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_20

    Chapter  Google Scholar 

  22. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: a simple residual MLP framework. In: ICLR (2022)

    Google Scholar 

  23. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  24. Morel, J., Bac, A., Kanai, T.: Segmentation of unbalanced and in-homogeneous point clouds and its application to 3d scanned trees. Vis. Comput. 36, 2419–2431 (2020). https://api.semanticscholar.org/CorpusID:222094240

  25. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: CVPR, pp. 77–85 (2017)

    Google Scholar 

  26. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS, pp. 5099–5108 (2017)

    Google Scholar 

  27. Qian, G., Hammoud, H., Li, G., Thabet, A.K., Ghanem, B.: ASSANet: an anisotropic separable set abstraction for efficient point cloud representation learning. In: NeurIPS, pp. 28119–28130 (2021)

    Google Scholar 

  28. Qian, G., et al.: PoiNtneXt: revisiting PointNet++ with improved training and scaling strategies. In: NeurIPS (2022)

    Google Scholar 

  29. Qiu, S., Anwar, S., Barnes, N.: Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion. In: CVPR, pp. 1757–1767 (2021)

    Google Scholar 

  30. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  31. Tang, H., et al.: Searching efficient 3D architectures with sparse point-voxel convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 685–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_41

    Chapter  Google Scholar 

  32. Tang, L., Zhan, Y., Chen, Z., Yu, B., Tao, D.: Contrastive boundary learning for point cloud segmentation. In: CVPR, pp. 8479–8489 (2022)

    Google Scholar 

  33. Thomas, H., Qi, C.R., Deschaud, J., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV, pp. 6410–6419 (2019)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  35. Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3d LiDAR point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE (2018)

    Google Scholar 

  36. Xiang, N., Liang, H.N., Yu, L., Yang, X., Zhang, J.J.: A mixed reality framework for microsurgery simulation with visual-tactile perception. Vis. Comput. 39, 3661–3673 (2023). https://api.semanticscholar.org/CorpusID:259765573

  37. Yang, M., Yuan, Y., Liu, G.: SDUNet: road extraction via spatial enhanced and densely connected UNet. Pattern Recogn. 126, 108549 (2022)

    Article  Google Scholar 

  38. Yang, X., Xia, D., Kin, T., Igarashi, T.: Intra: 3d intracranial aneurysm dataset for deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2656–2666 (2020)

    Google Scholar 

  39. Yu, J., et al.: 3d medical point transformer: introducing convolution to attention networks for medical point cloud analysis. arXiv preprint arXiv:2112.04863 (2021)

  40. Zhan, B., et al.: Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med. Image Anal. 77, 102339 (2022)

    Article  Google Scholar 

  41. Zhao, H., Jiang, L., Jia, J., Torr, P.H.S., Koltun, V.: Point transformer. In: ICCV, pp. 16239–16248 (2021)

    Google Scholar 

  42. Zheng, X., et al.: MIGO-NAS: towards fast and generalizable neural architecture search. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 2936–2952 (2021)

    Article  Google Scholar 

  43. Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., Tian, Q.: Multinomial distribution learning for effective neural architecture search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1304–1313 (2019)

    Google Scholar 

  44. Zheng, X., et al.: Rethinking performance estimation in neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11356–11365 (2020)

    Google Scholar 

  45. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

  46. Zhou, Q., et al.: EC-DARTS: inducing equalized and consistent optimization into darts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11986–11995 (2021)

    Google Scholar 

  47. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3d object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R &D Program of China (No. 2022ZD0118202), the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of China (No. U21B2037, No. U22B2051, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, No. 62002305 and No. 62272401), and the Natural Science Foundation of Fujian Province of China (No. 2021J01002, No. 2022J06001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiawu Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, F., Qian, Y., Zheng, H., Zhang, Y., Zheng, X. (2024). A Novel Neighbor Aggregation Function for Medical Point Cloud Analysis. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14498. Springer, Cham. https://doi.org/10.1007/978-3-031-50078-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50078-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50077-0

  • Online ISBN: 978-3-031-50078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics