Abstract
Point cloud analysis is a technique that performs analysis and processing of point cloud data. In the medical field, point cloud analysis has been widely used. However, the existing common neighbor aggregation module in point cloud analysis networks can only aggregate some of the neighbor features, which will lead to the omission of valid information and affect the performance of point cloud analysis, which may lead to serious consequences in the medical diagnosis process. In this paper, we improve the ability of point cloud analysis networks to extract complex biological structures by improving the neighbor aggregation module in point cloud analysis. Specifically, we enable the module to efficiently extract more adequate information by softening the max pooling function commonly used in the neighbor aggregation module. In particular, we improve 2.18% IoU on the IntrA dataset compared to the previous state-of-the-art method, and we also surpass the previous state-of-the-art method on the S3DIS dataset. Code is available at https://github.com/wfan1203/PointSWT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, S.G., et al.: Cost-effective broad learning-based ultrasound biomicroscopy with 3d reconstruction for ocular anterior segmentation. Multimed. Tools Appl. 80, 35105–35122 (2020). https://api.semanticscholar.org/CorpusID:221110873
Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d–3d-semantic data for indoor scene understanding. CoRR abs/1702.01105 (2017)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4338–4364 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: CVPR, pp. 11105–11114 (2020)
Hu, R., Liu, Y., Gu, K., Min, X., Zhai, G.: Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. (2021)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: DUNet: a deformable network for retinal vessel segmentation. Knowl.-Based Syst. 178, 149–162 (2019)
Kamel, A., Sheng, B., Li, P., Kim, J., Feng, D.D.: Efficient body motion quantification and similarity evaluation using 3-d joints skeleton coordinates. IEEE Trans. Syst. Man Cybern.: Syst. 51, 2774–2788 (2021). https://api.semanticscholar.org/CorpusID:189977703
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Li, G., Müller, M., Thabet, A.K., Ghanem, B.: DeepGCNs: can GCNs go as deep as CNNs? In: ICCV, pp. 9266–9275 (2019)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: NeurIPS, pp. 828–838 (2018)
Lin, H., et al.: Meta architecure for point cloud analysis. ArXiv: abs/2211.14462 (2022)
Liu, Y., Gu, K., Li, X., Zhang, Y.: Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(3), 1–91 (2020)
Liu, Y., Gu, K., Wang, S., Zhao, D., Gao, W.: Blind quality assessment of camera images based on low-level and high-level statistical features. IEEE Trans. Multimed. 21(1), 135–146 (2018)
Liu, Y., Gu, K., Zhai, G., Liu, X., Zhao, D., Gao, W.: Quality assessment for real out-of-focus blurred images. J. Vis. Commun. Image Represent. 46, 70–80 (2017)
Liu, Y., et al.: Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circuits Syst. Video Technol. 30(4), 929–943 (2019)
Liu, Y., Zhai, G., Gu, K., Liu, X., Zhao, D., Gao, W.: Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Trans. Multimed. 20(2), 379–391 (2017)
Liu, Z., Hu, H., Cao, Y., Zhang, Z., Tong, X.: A closer look at local aggregation operators in point cloud analysis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 326–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_20
Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: a simple residual MLP framework. In: ICLR (2022)
Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)
Morel, J., Bac, A., Kanai, T.: Segmentation of unbalanced and in-homogeneous point clouds and its application to 3d scanned trees. Vis. Comput. 36, 2419–2431 (2020). https://api.semanticscholar.org/CorpusID:222094240
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: CVPR, pp. 77–85 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS, pp. 5099–5108 (2017)
Qian, G., Hammoud, H., Li, G., Thabet, A.K., Ghanem, B.: ASSANet: an anisotropic separable set abstraction for efficient point cloud representation learning. In: NeurIPS, pp. 28119–28130 (2021)
Qian, G., et al.: PoiNtneXt: revisiting PointNet++ with improved training and scaling strategies. In: NeurIPS (2022)
Qiu, S., Anwar, S., Barnes, N.: Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion. In: CVPR, pp. 1757–1767 (2021)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)
Tang, H., et al.: Searching efficient 3D architectures with sparse point-voxel convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 685–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_41
Tang, L., Zhan, Y., Chen, Z., Yu, B., Tao, D.: Contrastive boundary learning for point cloud segmentation. In: CVPR, pp. 8479–8489 (2022)
Thomas, H., Qi, C.R., Deschaud, J., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV, pp. 6410–6419 (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3d LiDAR point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE (2018)
Xiang, N., Liang, H.N., Yu, L., Yang, X., Zhang, J.J.: A mixed reality framework for microsurgery simulation with visual-tactile perception. Vis. Comput. 39, 3661–3673 (2023). https://api.semanticscholar.org/CorpusID:259765573
Yang, M., Yuan, Y., Liu, G.: SDUNet: road extraction via spatial enhanced and densely connected UNet. Pattern Recogn. 126, 108549 (2022)
Yang, X., Xia, D., Kin, T., Igarashi, T.: Intra: 3d intracranial aneurysm dataset for deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2656–2666 (2020)
Yu, J., et al.: 3d medical point transformer: introducing convolution to attention networks for medical point cloud analysis. arXiv preprint arXiv:2112.04863 (2021)
Zhan, B., et al.: Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med. Image Anal. 77, 102339 (2022)
Zhao, H., Jiang, L., Jia, J., Torr, P.H.S., Koltun, V.: Point transformer. In: ICCV, pp. 16239–16248 (2021)
Zheng, X., et al.: MIGO-NAS: towards fast and generalizable neural architecture search. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 2936–2952 (2021)
Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., Tian, Q.: Multinomial distribution learning for effective neural architecture search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1304–1313 (2019)
Zheng, X., et al.: Rethinking performance estimation in neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11356–11365 (2020)
Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)
Zhou, Q., et al.: EC-DARTS: inducing equalized and consistent optimization into darts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11986–11995 (2021)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3d object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)
Acknowledgements
This work was supported by National Key R &D Program of China (No. 2022ZD0118202), the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of China (No. U21B2037, No. U22B2051, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, No. 62002305 and No. 62272401), and the Natural Science Foundation of Fujian Province of China (No. 2021J01002, No. 2022J06001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, F., Qian, Y., Zheng, H., Zhang, Y., Zheng, X. (2024). A Novel Neighbor Aggregation Function for Medical Point Cloud Analysis. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14498. Springer, Cham. https://doi.org/10.1007/978-3-031-50078-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-50078-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50077-0
Online ISBN: 978-3-031-50078-7
eBook Packages: Computer ScienceComputer Science (R0)