Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximately Packing Dijoins via Nowhere-Zero Flows

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Abstract

In a digraph, a dicut is a cut where all the arcs cross in one direction. A dijoin is a subset of arcs that intersects each dicut. Woodall conjectured in 1976 that in every digraph, the minimum size of a dicut equals to the maximum number of disjoint dijoins. However, prior to our work, it was not even known whether at least 3 disjoint dijoins exist in an arbitrary digraph whose minimum dicut size is sufficiently large. By building connections with nowhere-zero (circular) k-flows, we prove that every digraph with minimum dicut size \(\tau \) contains \(\frac{\tau }{k}\) disjoint dijoins if the underlying undirected graph admits a nowhere-zero (circular) k-flow. The existence of nowhere-zero 6-flows in 2-edge-connected graphs (Seymour 1981) directly leads to the existence of \(\frac{\tau }{6}\) disjoint dijoins in a digraph with minimum dicut size \(\tau \), which can be found in polynomial time as well. The existence of nowhere-zero circular \(\frac{2p+1}{p}\)-flows in 6p-edge-connected graphs (Lovász et al. 2013) directly leads to the existence of \(\frac{\tau p}{2p+1}\) disjoint dijoins in a digraph with minimum dicut size \(\tau \) whose underlying undirected graph is 6p-edge-connected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, A., Cornuéjols, G., Zambelli, G.: Arc connectivity and submodular flows in digraphs (2023). https://www.andrew.cmu.edu/user/gc0v/webpub/connectedflip.pdf

  2. Abdi, A., Cornuéjols, G., Zlatin, M.: On packing dijoins in digraphs and weighted digraphs. SIAM J. Discret. Math. 37(4), 2417–2461 (2023)

    Article  MathSciNet  Google Scholar 

  3. Bang-Jensen, J., Kriesell, M.: Disjoint sub (di) graphs in digraphs. Electron. Notes Discrete Math. 34, 179–183 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bang-Jensen, J., Yeo, A.: Decomposing k-arc-strong tournaments into strong spanning subdigraphs. Combinatorica 24, 331–349 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chudnovsky, M., Edwards, K., Kim, R., Scott, A., Seymour, P.: Disjoint dijoins. J. Combin. Theory Ser. B 120, 18–35 (2016)

    Article  MathSciNet  Google Scholar 

  6. Devos, M.: Woodall’s conjecture. http://www.openproblemgarden.org/op/woodalls_conjecture

  7. Edmonds, J.: Edge-disjoint branchings. Combin. Algorithms 91–96 (1973)

    Google Scholar 

  8. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1, 185–204 (1977)

    Article  MathSciNet  Google Scholar 

  9. Goddyn, L.A.: Some open problems I like. https://www.sfu.ca/~goddyn/Problems/problems.html

  10. Goddyn, L.A., Tarsi, M., Zhang, C.-Q.: On (k, d)-colorings and fractional nowhere-zero flows. J. Graph Theory 28(3), 155–161 (1998)

    Article  MathSciNet  Google Scholar 

  11. Jaeger, F.: On nowhere-zero flows in multigraphs. In: Proceedings, Fifth British Combinatorial Conference, Aberdeen, pp. 373–378 (1975)

    Google Scholar 

  12. Jaeger, F.: Flows and generalized coloring theorems in graphs. J. Combin. Theory Ser. B 26(2), 205–216 (1979)

    Article  MathSciNet  Google Scholar 

  13. Jaeger, F.: On circular flows in graphs. In: Finite and Infinite Sets, pp. 391–402. Elsevier (1984)

    Google Scholar 

  14. Jaeger, F.: Nowhere-zero flow problems. Sel. Top. Graph Theory 3, 71–95 (1988)

    MathSciNet  Google Scholar 

  15. Király, T.: A result on crossing families of odd sets (2007). https://egres.elte.hu/tr/egres-07-10.pdf

  16. Lovász, L.: Combinatorial Problems and Exercises, vol. 361. American Mathematical Society (2007)

    Google Scholar 

  17. Lovász, L.M., Thomassen, C., Wu, Y., Zhang, C.-Q.: Nowhere-zero 3-flows and modulo k-orientations. J. Combin. Theory Ser. B 103(5), 587–598 (2013)

    Article  MathSciNet  Google Scholar 

  18. Mészáros, A.: A note on disjoint dijoins. Combinatorica 38(6), 1485–1488 (2018)

    Article  MathSciNet  Google Scholar 

  19. Schrijver, A.: Observations on Woodall’s conjecture. https://homepages.cwi.nl/~lex/files/woodall.pdf

  20. Schrijver, A.: A counterexample to a conjecture of Edmonds and Giles. Discret. Math. 32, 213–214 (1980)

    Article  MathSciNet  Google Scholar 

  21. Schrijver, A.: Total dual integrality from directed graphs, crossing families, and sub-and supermodular functions. In: Progress in Combinatorial Optimization, pp. 315–361. Elsevier (1984)

    Google Scholar 

  22. Seymour, P.D.: Nowhere-zero 6-flows. J. Combin. Theory Ser. B 30(2), 130–135 (1981)

    Article  MathSciNet  Google Scholar 

  23. Shepherd, B., Vetta, A.: Visualizing, finding and packing dijoins. Graph Theory Combin. Optim. 219–254 (2005)

    Google Scholar 

  24. Thomassen, C.: The weak 3-flow conjecture and the weak circular flow conjecture. J. Combin. Theory Ser. B 102(2), 521–529 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)

    Article  MathSciNet  Google Scholar 

  26. Woodall, D.R.: Menger and König systems. In: Theory and Applications of Graphs: Proceedings, Michigan, 11–15 May 1976, pp. 620–635 (1978)

    Google Scholar 

  27. Younger, D.H.: Integer flows. J. Graph Theory 7(3), 349–357 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by the U.S. Office of Naval Research under award number N00014-22-1-2528, the second author is supported by a Balas Ph.D. Fellowship from the Tepper School, Carnegie Mellon University and the third author is supported by the U.S. Office of Naval Research under award number N00014-21-1-2243 and the Air Force Office of Scientific Research under award number FA9550-20-1-0080. We thank Ahmad Abdi, Olha Silina and Michael Zlatin for invaluable discussions, and the referees for their detailed suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyue Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cornuéjols, G., Liu, S., Ravi, R. (2024). Approximately Packing Dijoins via Nowhere-Zero Flows. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics