Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sparsity and Integrality Gap Transference Bounds for Integer Programs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14679))

  • 441 Accesses

Abstract

We obtain new transference bounds that connect two active areas of research: proximity and sparsity of solutions to integer programs. Specifically, we study the additive integrality gap of the integer linear programs \(\min \{{\boldsymbol{c}}\cdot {\boldsymbol{x}}: {\boldsymbol{x}}\in P\cap \mathbb Z^n\}\), where \(P=\{{\boldsymbol{x}}\in \mathbb R^n: \boldsymbol{A}{\boldsymbol{x}}={\boldsymbol{b}}, {\boldsymbol{x}}\ge {\boldsymbol{0}}\}\) is a polyhedron in the standard form determined by an integer \(m\times n\) matrix \(\boldsymbol{A}\) and an integer vector \({\boldsymbol{b}}\). The main result of the paper gives an upper bound for the integrality gap that drops exponentially in the size of support of the optimal solutions corresponding to the vertices of the integer hull of P. Additionally, we obtain a new proximity bound that estimates the \(\ell _2\)-distance from a vertex of P to its nearest integer point in the polyhedron P. The proofs make use of the results from the geometry of numbers and convex geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdi, A., Cornuéjols, G., Guenin, B., Tunçel, L.: Dyadic linear programming and extensions. arXiv:2309.04601 (2023)

  2. Aliev, I., Averkov, G., De Loera, J.A., Oertel, T.: Sparse representation of vectors in lattices and semigroups. Math. Program. 192, 519–546 (2022)

    Article  MathSciNet  Google Scholar 

  3. Aliev, I., Celaya, M., Henk, M., Williams, A.: Distance-sparsity transference for vertices of corner polyhedra. SIAM J. Optim. 31(1), 200–216 (2021)

    Article  MathSciNet  Google Scholar 

  4. Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018)

    Article  MathSciNet  Google Scholar 

  5. Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear Diophantine equations. SIAM J. Appl. Algebra Geom. 1(1), 239–253 (2017)

    Article  MathSciNet  Google Scholar 

  6. Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra. Math. Program. 182(1–2), 175–198 (2020)

    Article  MathSciNet  Google Scholar 

  7. Berndt, S., Jansen, K., Klein, K.-M.: New bounds for the vertices of the integer hull. In: Symposium on Simplicity in Algorithms (SOSA), pp. 25–36. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2021)

    Google Scholar 

  8. Blair, C.E., Jeroslow, R.G.: The value function of a mixed integer program. I. Discrete Math. 19(2), 121–138 (1977)

    Article  MathSciNet  Google Scholar 

  9. Blair, C.E., Jeroslow, R.G.: The value function of an integer program. Math. Program. 23(3), 237–273 (1982)

    Article  MathSciNet  Google Scholar 

  10. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Classics in Mathematics. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-62035-5

  11. Celaya, M., Kuhlmann, S., Paat, J., Weismantel, R.: Improving the Cook et al. proximity bound given integral valued constraints. In: Aardal, K., Sanitá, L. (eds.) IPCO 2022. LNCS, vol. 13265, pp. 84–97. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06901-7_7

    Chapter  Google Scholar 

  12. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theorem. J. Combin. Theory Ser. B 40(1), 63–70 (1986)

    Article  MathSciNet  Google Scholar 

  13. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear programming. Math. Program. 34(3), 251–264 (1986)

    Article  MathSciNet  Google Scholar 

  14. Dubey, Y., Liu, S.: A short proof of tight bounds on the smallest support size of integer solutions to linear equations. arXiv:2307.08826 (2023)

  15. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34(5), 564–568 (2006)

    Article  MathSciNet  Google Scholar 

  16. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 808–816. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2018)

    Google Scholar 

  17. Gomory, R.E.: On the relation between integer and noninteger solutions to linear programs. Proc. Nat. Acad. Sci. U.S.A. 53, 260–265 (1965)

    Article  MathSciNet  Google Scholar 

  18. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2, 451–558 (1969)

    Article  MathSciNet  Google Scholar 

  19. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) ISCO 2020. LNCS, vol. 12176, pp. 115–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53262-8_10

    Chapter  Google Scholar 

  20. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number of differing columns of \(\varDelta \)-modular integer programs. Math. Oper. Res. 48, 2267–2286 (2023)

    MathSciNet  Google Scholar 

  21. Oertel, T., Paat, J., Weismantel, R.: The distributions of functions related to parametric integer optimization. SIAM J. Appl. Algebra Geom. 4(3), 422–440 (2020)

    Article  MathSciNet  Google Scholar 

  22. Paat, J., Weismantel, R., Weltge, S.: Distances between optimal solutions of mixed-integer programs. Math. Program. 179(1–2), 455–468 (2020)

    Article  MathSciNet  Google Scholar 

  23. Sebő, A.: Hilbert bases, Carathéodory’s theorem and combinatorial optimization. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 431–455. University of Waterloo Press (1990)

    Google Scholar 

  24. Skolem, T.: Diophantische Gleichungen. Ergebnisse der Mathematik, vol 5. Springer, Berlin (1938)

    Google Scholar 

  25. Vaaler, J.D.: A geometric inequality with applications to linear forms. Pacific J. Math. 83(2), 543–553 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors thank the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Aliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliev, I., Celaya, M., Henk, M. (2024). Sparsity and Integrality Gap Transference Bounds for Integer Programs. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics