Abstract
Library service quality has been taken into account after the COVID-19 pandemic to propose appropriate conditions under the rapid change of technology circumstances. The main study in this paper is to consider the evaluation of students’ sentiments to understand the role of library service quality after the pandemic outbreak and evaluate library service quality consistent with the new situation. For this study, we employ deep learning models such as Convolutional Bidirectional Long Short-Term Memory (Conv-BiLSTM) and Convolutional Bidirectional Gated Recurrent Unit (Conv-BiGRU), Attention and Transformer TFBERT model. Our findings indicate that the Conv-BiLSTM (94.59%) and Conv-BiGRU (94.33%) outperformed the others, achieving the highest accuracy for the prediction of Vietnamese students’ sentiments about library service quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Duong, H.-T., Nguyen-Thi, T.-A., Hoang, V.T.: Vietnamese sentiment analysis under limited training data based on deep neural networks. Complexity 2022, 1–14 (2022). https://doi.org/10.1155/2022/3188449
Aharon, D.Y., et al.: Related COVID-19 media sentiment and the yield curve of G-7 economies. North Am. J. Econ. Financ. 61 (2022). https://doi.org/10.1016/j.najef.2022.101678
Catelli, R., et al.: Deceptive reviews and sentiment polarity: effective link by exploiting BERT. Expert Syst. Appl. 209 (2022). https://doi.org/10.1016/j.eswa.2022.118290
Nguyen, C.V., et al.: Learning for amalgamation: a multi-source transfer learning framework for sentiment classification. Inf. Sci. 1–14, 590 (2022). https://doi.org/10.1016/j.ins.2021.12.059
Dang, R., et al.: Sentiment analysis for Vietnamese - based hybrid deep learning models. Comput. Sci. Math. 2023 (2022). https://doi.org/10.20944/preprints202306.1318.v1
Zeitun, R., et al.: The impact of Twitter-based sentiment on US sectoral returns. North Am. J. Econ. Financ. 64 (2023). https://doi.org/10.1016/j.najef.2022.101847
Huang, B., et al.: CRF-GCN: an effective syntactic dependency model for aspect-level sentiment analysis. Knowl.-Based Syst. 260, 110125 (2023). https://doi.org/10.1016/j.knosys.2022.110125
Imran, A.S., et al.: The impact of synthetic text generation for sentiment analysis using GAN based models. Egypt. Inform. J. 23(3), 547–557 (2023). https://doi.org/10.1016/j.eij.2022.05.006
Liu, Q., Huang, M., Zhao, L., Lee, W.-S.: The dispositional effects of holidays on investor sentiment: therapeutic and hygienic. J. Innov. Knowl. 8(2), 100358 (2023). https://doi.org/10.1016/j.jik.2023.100358
Zhu, Y., et al.: Topic driven adaptive network for cross-domain sentiment classification. Inf. Process. Manag. 60(2), (2023). https://doi.org/10.1016/j.ipm.2022.103230
Tuan, N.M., Meesad, P.: A study of predicting the sincerity of a question asked using machine learning. In: 5th International Conference on Natural Language Processing and Information Retrieval (NLPIR), pp. 129–134 (2021). https://doi.org/10.1145/3508230.3508258
Tuan, N.M., Meesad, P., Nguyen, H.H.C.: English-Vietnamese machine translation using deep learning for chatbot applications. SN Comput. Sci. 5 (2024). https://doi.org/10.1007/s42979-023-02339-2
Meesad, P.: Thai fake news detection based on information retrieval, natural language processing and machine learning. SN Comput. Sci. 2(6), 425 (2023). https://doi.org/10.1007/s42979-021-00775-6
Nguyen, K.V., et al.: UIT-VSFC: Vietnamese students’ feedback corpus for sentiment analysis. In: 10th International Conference on Knowledge and Systems Engineering (KSE), pp. 19–24 (2018). https://doi.org/10.1109/KSE.2018.8573337
Tuan, N.M., et al.: New data about library service quality and convolution prediction. CTU J. Innov. Sustain. Dev. 14 (2023). https://doi.org/10.22144/ctujoisd.2023.032
Minh, T.N., Meesad, P., Nguyen Ha, H.C.: English-Vietnamese machine translation using deep learning. In: Meesad, P., Sodsee, S., Jitsakul, W., Tangwannawit, S. (eds.) IC2IT 2021. LNNS, vol. 251, pp. 99–107. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79757-7_10
Tuan, N.M.: Machine learning performance on predicting banking term deposit. In: Proceedings of the 24th International Conference on Enterprise Information Systems, pp. 267–272 (2022). https://doi.org/10.5220/0011096600003179
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tuan, N.M., Meesad, P., Van Hieu, D., Cuong, N.H.H., Maliyaem, M. (2024). On Students’ Behavior Prediction for Library Service Quality Using Bidirectional Deep Machine Learning. In: Meesad, P., Sodsee, S., Jitsakul, W., Tangwannawit, S. (eds) Proceedings of the 20th International Conference on Computing and Information Technology (IC2IT 2024). IC2IT 2024. Lecture Notes in Networks and Systems, vol 973. Springer, Cham. https://doi.org/10.1007/978-3-031-58561-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-58561-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58560-9
Online ISBN: 978-3-031-58561-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)