Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Students’ Behavior Prediction for Library Service Quality Using Bidirectional Deep Machine Learning

  • Conference paper
  • First Online:
Proceedings of the 20th International Conference on Computing and Information Technology (IC2IT 2024) (IC2IT 2024)

Abstract

Library service quality has been taken into account after the COVID-19 pandemic to propose appropriate conditions under the rapid change of technology circumstances. The main study in this paper is to consider the evaluation of students’ sentiments to understand the role of library service quality after the pandemic outbreak and evaluate library service quality consistent with the new situation. For this study, we employ deep learning models such as Convolutional Bidirectional Long Short-Term Memory (Conv-BiLSTM) and Convolutional Bidirectional Gated Recurrent Unit (Conv-BiGRU), Attention and Transformer TFBERT model. Our findings indicate that the Conv-BiLSTM (94.59%) and Conv-BiGRU (94.33%) outperformed the others, achieving the highest accuracy for the prediction of Vietnamese students’ sentiments about library service quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duong, H.-T., Nguyen-Thi, T.-A., Hoang, V.T.: Vietnamese sentiment analysis under limited training data based on deep neural networks. Complexity 2022, 1–14 (2022). https://doi.org/10.1155/2022/3188449

    Article  Google Scholar 

  2. Aharon, D.Y., et al.: Related COVID-19 media sentiment and the yield curve of G-7 economies. North Am. J. Econ. Financ. 61 (2022). https://doi.org/10.1016/j.najef.2022.101678

  3. Catelli, R., et al.: Deceptive reviews and sentiment polarity: effective link by exploiting BERT. Expert Syst. Appl. 209 (2022). https://doi.org/10.1016/j.eswa.2022.118290

  4. Nguyen, C.V., et al.: Learning for amalgamation: a multi-source transfer learning framework for sentiment classification. Inf. Sci. 1–14, 590 (2022). https://doi.org/10.1016/j.ins.2021.12.059

    Article  Google Scholar 

  5. Dang, R., et al.: Sentiment analysis for Vietnamese - based hybrid deep learning models. Comput. Sci. Math. 2023 (2022). https://doi.org/10.20944/preprints202306.1318.v1

  6. Zeitun, R., et al.: The impact of Twitter-based sentiment on US sectoral returns. North Am. J. Econ. Financ. 64 (2023). https://doi.org/10.1016/j.najef.2022.101847

  7. Huang, B., et al.: CRF-GCN: an effective syntactic dependency model for aspect-level sentiment analysis. Knowl.-Based Syst. 260, 110125 (2023). https://doi.org/10.1016/j.knosys.2022.110125

    Article  Google Scholar 

  8. Imran, A.S., et al.: The impact of synthetic text generation for sentiment analysis using GAN based models. Egypt. Inform. J. 23(3), 547–557 (2023). https://doi.org/10.1016/j.eij.2022.05.006

    Article  Google Scholar 

  9. Liu, Q., Huang, M., Zhao, L., Lee, W.-S.: The dispositional effects of holidays on investor sentiment: therapeutic and hygienic. J. Innov. Knowl. 8(2), 100358 (2023). https://doi.org/10.1016/j.jik.2023.100358

    Article  Google Scholar 

  10. Zhu, Y., et al.: Topic driven adaptive network for cross-domain sentiment classification. Inf. Process. Manag. 60(2), (2023). https://doi.org/10.1016/j.ipm.2022.103230

  11. Tuan, N.M., Meesad, P.: A study of predicting the sincerity of a question asked using machine learning. In: 5th International Conference on Natural Language Processing and Information Retrieval (NLPIR), pp. 129–134 (2021). https://doi.org/10.1145/3508230.3508258

  12. Tuan, N.M., Meesad, P., Nguyen, H.H.C.: English-Vietnamese machine translation using deep learning for chatbot applications. SN Comput. Sci. 5 (2024). https://doi.org/10.1007/s42979-023-02339-2

  13. Meesad, P.: Thai fake news detection based on information retrieval, natural language processing and machine learning. SN Comput. Sci. 2(6), 425 (2023). https://doi.org/10.1007/s42979-021-00775-6

    Article  Google Scholar 

  14. Nguyen, K.V., et al.: UIT-VSFC: Vietnamese students’ feedback corpus for sentiment analysis. In: 10th International Conference on Knowledge and Systems Engineering (KSE), pp. 19–24 (2018). https://doi.org/10.1109/KSE.2018.8573337

  15. Tuan, N.M., et al.: New data about library service quality and convolution prediction. CTU J. Innov. Sustain. Dev. 14 (2023). https://doi.org/10.22144/ctujoisd.2023.032

  16. Minh, T.N., Meesad, P., Nguyen Ha, H.C.: English-Vietnamese machine translation using deep learning. In: Meesad, P., Sodsee, S., Jitsakul, W., Tangwannawit, S. (eds.) IC2IT 2021. LNNS, vol. 251, pp. 99–107. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79757-7_10

    Chapter  Google Scholar 

  17. Tuan, N.M.: Machine learning performance on predicting banking term deposit. In: Proceedings of the 24th International Conference on Enterprise Information Systems, pp. 267–272 (2022). https://doi.org/10.5220/0011096600003179

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Minh Tuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tuan, N.M., Meesad, P., Van Hieu, D., Cuong, N.H.H., Maliyaem, M. (2024). On Students’ Behavior Prediction for Library Service Quality Using Bidirectional Deep Machine Learning. In: Meesad, P., Sodsee, S., Jitsakul, W., Tangwannawit, S. (eds) Proceedings of the 20th International Conference on Computing and Information Technology (IC2IT 2024). IC2IT 2024. Lecture Notes in Networks and Systems, vol 973. Springer, Cham. https://doi.org/10.1007/978-3-031-58561-6_6

Download citation

Publish with us

Policies and ethics