Nothing Special   »   [go: up one dir, main page]

Skip to main content

Actor-Centric Spatio-Temporal Feature Extraction for Action Recognition

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Abstract

Action understanding involves the recognition and detection of specific actions within videos. This crucial task in computer vision gained significant attention due to its multitude of applications across various domains. The current action detection models, inspired by 2D object detection methods, employ two-stage architectures. The first stage is to extract actor-centric video sub-clips, i.e. tubelets of individuals, and the second stage is to classify these tubelets using action recognition networks. The majority of these recognition models utilize a frame-level pre-trained 3D Convolutional Neural Networks (3D CNN) to extract spatio-temporal features of a given tubelet. This, however, results in suboptimal spatio-temporal feature representation for action recognition, primarily because the actor typically occupies a relatively small area in the frame.

This work proposes the use of actor-centric tubelets instead of frames to learn spatio-temporal feature representation for action recognition. We present an empirical study of the actor-centric tubelet and frame-level action recognition models and propose a baseline for actor-centric action recognition. We evaluated the proposed method on the state-of-the-art C3D, I3D, and SlowFast 3D CNN architectures using the NTURGBD dataset. Our results demonstrate that the actor-centric feature extractor consistently outperforms the frame-level and large pre-trained fine-tuned models. The source code for the tubelet generation is available at https://github.com/anilkunchalaece/ntu_tubelet_parser.

This work was conducted with the financial support of the Science Foundation Ireland Centre for Research Training in Digitally-Enhanced Reality (d-real) under Grant No. 18/CRT/6224.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/open-mmlab/mmaction2.

References

  1. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  3. Dave, I., Scheffer, Z., Kumar, A., Shiraz, S., Rawat, Y.S., Shah, M.: Gabriellav2: towards better generalization in surveillance videos for action detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 122–132 (2022)

    Google Scholar 

  4. Duan, H., Zhao, Y., Chen, K., Lin, D., Dai, B.: Revisiting skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2969–2978 (2022)

    Google Scholar 

  5. Ehsanpour, M., Saleh, F., Savarese, S., Reid, I., Rezatofighi, H.: JRDB-act: a large-scale dataset for spatio-temporal action, social group and activity detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20983–20992 (2022)

    Google Scholar 

  6. Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)

    Google Scholar 

  7. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  8. Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: A better baseline for ava. arXiv preprint arXiv:1807.10066 (2018)

  9. Gkountakos, K., Touska, D., Ioannidis, K., Tsikrika, T., Vrochidis, S., Kompatsiaris, I.: Spatio-temporal activity detection and recognition in untrimmed surveillance videos. In: Proceedings of the 2021 International Conference on Multimedia Retrieval, pp. 451–455 (2021)

    Google Scholar 

  10. Gleason, J., Castillo, C.D., Chellappa, R.: Real-time detection of activities in untrimmed videos. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, pp. 117–125 (2020)

    Google Scholar 

  11. Gleason, J., Ranjan, R., Schwarcz, S., Castillo, C., Chen, J.C., Chellappa, R.: A proposal-based solution to spatio-temporal action detection in untrimmed videos. In: 2019 IEEE winter conference on applications of computer vision (WACV), pp. 141–150. IEEE (2019)

    Google Scholar 

  12. Gu, C., et al.: Ava: a video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6047–6056 (2018)

    Google Scholar 

  13. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  14. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  15. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: Ntu rgb+ d 120: a large-scale benchmark for 3D human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2684–2701 (2019)

    Article  Google Scholar 

  16. Liu, W., et al.: Argus: efficient activity detection system for extended video analysis. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, pp. 126–133 (2020)

    Google Scholar 

  17. Mavroudi, E., Bindal, P., Vidal, R.: Actor-centric tubelets for real-time activity detection in extended videos. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 172–181 (2022)

    Google Scholar 

  18. Oh, S., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR 2011, pp. 3153–3160. IEEE (2011)

    Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Singh, G., Choutas, V., Saha, S., Yu, F., Van Gool, L.: Spatio-temporal action detection under large motion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6009–6018 (2023)

    Google Scholar 

  21. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  22. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  23. Zhang, B., Wan, J., Zhao, Y., Tong, Z., Du, Y.: Multi-actor activity detection by modeling object relationships in extended videos based on deep learning. Eng. Appl. Artif. Intell. 114, 105055 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunchala Anil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anil, K., Bouroche, M., Schoen-Phelan, B. (2024). Actor-Centric Spatio-Temporal Feature Extraction for Action Recognition. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2009. Springer, Cham. https://doi.org/10.1007/978-3-031-58181-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58181-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58180-9

  • Online ISBN: 978-3-031-58181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics