Nothing Special   »   [go: up one dir, main page]

Skip to main content

Is Grad-CAM Explainable in Medical Images?

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2009))

Included in the following conference series:

Abstract

Explainable Deep Learning has gained significant attention in the field of artificial intelligence (AI), particularly in domains such as medical imaging, where accurate and interpretable machine learning models are crucial for effective diagnosis and treatment planning. Grad-CAM is a baseline that highlights the most critical regions of an image used in a deep learning model’s decision-making process, increasing interpretability and trust in the results. It is applied in many computer vision (CV) tasks such as classification and explanation. This study explores the principles of Explainable Deep Learning and its relevance to medical imaging, discusses various explainability techniques and their limitations, and examines medical imaging applications of Grad-CAM. The findings highlight the potential of Explainable Deep Learning and Grad-CAM in improving the accuracy and interpretability of deep learning models in medical imaging. The code is available in (https://github.com/beasthunter758/GradEML).

S. Suara, A. Jha, P. Sinha, and A. A. Sekh—All authors are having equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., Wang, J., Zhao, H., Tong, L., Han, J., Wei, P.: A multi-scale convolutional neural network for lung cancer detection using a large dataset. Med. Biol. Eng. Comput. 59, 2857–2866 (2021)

    Google Scholar 

  2. Wang, J., Sun, T., Zou, X., Cui, S., Han, J., Wei, P.: Exploring the interpretability of a deep learning-based system for breast cancer diagnosis using grad-cam and convolutional neural networks. J. Healthcare Eng. 1–9, 2021 (2021)

    Google Scholar 

  3. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  4. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 22, 223–256 (2020)

    Google Scholar 

  5. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  6. Samek, W., Wiegand, T., Muller, K.-R.: Towards explainable artificial intelligence: concepts and methods. arXiv preprint arXiv:2001.06822 (2019)

  7. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Deep learning in medical image analysis: a review. Engineering 7, 935–949 (2021)

    Google Scholar 

  8. Rajpurkar, P., et al.: Deep learning for chest radiograph diagnosis: A retrospective comparison of the chexnext algorithm to practicing radiologists. PLoS Med. 15(11), e1002686 (2018)

    Article  Google Scholar 

  9. Beam, A.L., Kohane, I.S.: Clinical concept embeddings learned from massive sources. NPJ Digit. Med. 3(1), 1–8 (2020)

    Google Scholar 

  10. Esteva, A., Robicquet, A., Ramsundar, B., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019)

    Article  Google Scholar 

  11. Shen, L., Margolies, L.R., Rothstein, J.H., Fluder, E., McBride, R., Sieh, W.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9(1), 12495 (2019). Nature Publishing Group UK London

    Article  Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  13. James Murdoch, W., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Interpretable machine learning: definitions, methods, and applications. arXiv preprint arXiv:1901.04592 (2019)

  14. Samek, W., Wiegand, T., Muller, K.-R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 (2017)

  15. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  16. Zhou, B., Khosla, A., Lapedriza, A., et al.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929. IEEE (2016)

    Google Scholar 

  17. Wang, Y., Wu, S., Zhang, Q., Zhang, J.: Robustness of grad-cam for multi-view mammogram classification. IEEE Access 9, 13766–13774 (2021)

    Google Scholar 

  18. Qin, F., Wang, Y., Zhang, Q., Guo, Y.: Multi-scale deep neural network for lung nodule classification based on CT images. J. Xray Sci. Technol. 29(4), 737–750 (2021)

    Google Scholar 

  19. Li, Z., Liu, W., Zhang, J., Shi, J., Wu, J.: Incorporating prior knowledge into grad-cam for improved interpretability and reduced misdiagnosis risk. Pattern Recogn. 119, 108145 (2021)

    Google Scholar 

  20. Wang, H., Zhang, W., Wang, Y., Cai, Y.: Grad-cam based multiscale deep learning model for automatic MRI breast tumor detection and classification. J. Healthcare Eng. 1–11, 2021 (2021)

    Google Scholar 

  21. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. GigaScience 7(6) (2018)

    Google Scholar 

  22. Bejnordi, B.E., Veta, M., van Diest, P.J., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, J. Am. Med. Assoc. 318(22), 2199–2210 (2017)

    Article  Google Scholar 

Download references

Funding

The Project funding including hardware resource (GPU) and other costs of the project is funded by the Science and Engineering Research Board (SERB), Govt. of India, Project No: SRG/2022/000122, executed in XIM University, Bhubaneswar, India, supervised by Arif Ahmed Sekh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Ahmed Sekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suara, S., Jha, A., Sinha, P., Sekh, A.A. (2024). Is Grad-CAM Explainable in Medical Images?. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2009. Springer, Cham. https://doi.org/10.1007/978-3-031-58181-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58181-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58180-9

  • Online ISBN: 978-3-031-58181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics