Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing the 5G-AKA Protocol with Post-quantum Digital Signature Method

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2024)

Abstract

Data communicated in 5G is crucial to the operation of many areas in our society which are under constant cyber-attacks. The Authenticated Key Agreement (5G-AKA) is a standardized protocol to ensure secure communication between devices and the network. However, the current state of cryptography that is used to provide security in the 5G-AKA will be surpassed by algorithms performed in Quantum Computers. The advance in Quantum Computing implies that its capacity to solve complex problems can be used to perform attacks in current cryptographic systems. Thus, the security in 5G communication needs to be revisited and adapted for the post-quantum era. This work proposes the implementation of a post-quantum algorithm in the 5G-AKA protocol. The Dilithium Crystals digital signature algorithm in the protocol’s Initiation Phase to ensure a secure communication between an user equipment and a serving network. The algorithm was successfully simulated providing a post-quantum communication. However, the time of execution can be improved to offer a scalable and universal solution in a post-quantum communication era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 5g: Everything you need to know. https://www.lifewire.com/5g-wireless-4155905. Accessed 01 Jun 2023

  2. Iso/iec 18033-2: Information technology - security techniques - encryption algorithms - part 2: Asymetric ciphers. ISO/IEC International Standards (2006)

    Google Scholar 

  3. 33.501, T.: Security architecture and procedures for 5g system (release 16). technical specification, 3rd generation partnership project (3gpp). Technical Specification Group Services and System Aspects (SA3) (2020)

    Google Scholar 

  4. Arapinis, M., et al.: New privacy issues in mobile telephony: fix and verification. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 205–216 (2012)

    Google Scholar 

  5. Borgaonkar, R., Hirschi, L., Park, S., Shaik, A.: New privacy threat on 3g, 4g, and upcoming 5g aka protocols. Cryptology ePrint Archive (2018)

    Google Scholar 

  6. Boyle, M.: Information assurance standards: a cornerstone for cyber defense. J. Inf. Warfare 13(2), 8–18 (2014)

    Google Scholar 

  7. Damir, M.T., Meskanen, T., Ramezanian, S., Niemi, V.: A beyond-5g authentication and key agreement protocol. In: Network and System Security: 16th International Conference, NSS 2022, Denarau Island, Fiji, December 9–12, 2022, Proceedings, pp. 249–264. Springer (2022). https://doi.org/10.1007/978-3-031-23020-2_14

  8. Damir, M.T., Meskanen, T., Ramezanian, S., Niemi, V.: On post-quantum perfect forward secrecy in 6g. arXiv preprint arXiv:2207.06144 (2022)

  9. Dehnel-Wild, M., Cremers, C.: Security vulnerability in 5g-aka draft. Department of Computer Science, University of Oxford, Technical report, pp. 14–37 (2018)

    Google Scholar 

  10. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 238–268 (2018)

    Google Scholar 

  11. Fernández-Caramés, T.M.: From pre-quantum to post-quantum IoT security: a survey on quantum-resistant cryptosystems for the internet of things. IEEE Internet Things J. 7(7), 6457–6480 (2019)

    Article  Google Scholar 

  12. Fodor, G., Do, H., Ashraf, S.A., Blasco, R., Sun, W., Belleschi, M., Hu, L.: Supporting enhanced vehicle-to-everything services by lte release 15 systems. IEEE Commun. Stand. Mag. 3(1), 26–33 (2019)

    Article  Google Scholar 

  13. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3gpp aka protocol. Cryptology ePrint Archive (2016)

    Google Scholar 

  14. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  Google Scholar 

  15. Hoffstein, J., Pipher, J., Silverman, J.H., Silverman, J.H.: An introduction to mathematical cryptography, vol. 1. Springer (2008)

    Google Scholar 

  16. Khan, H., Martin, K.M.: On the efficacy of new privacy attacks against 5g aka. In: ICETE (2), pp. 431–438 (2019)

    Google Scholar 

  17. Koutsos, A.: The 5g-aka authentication protocol privacy (technical report). arXiv preprint arXiv:1811.06922 (2018)

  18. Koutsos, A.: The 5g-aka authentication protocol privacy. In: 2019 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 464–479. IEEE (2019)

    Google Scholar 

  19. Marchsreiter, D., Sepúlveda, J.: Hybrid post-quantum enhanced tls 1.3 on embedded devices. In: 2022 25th Euromicro Conference on Digital System Design (DSD), pp. 905–912. IEEE (2022)

    Google Scholar 

  20. Mitchell, C.J.: The impact of quantum computing on real-world security: a 5g case study. Comput. Secur. 93, 101825 (2020)

    Article  Google Scholar 

  21. Richter, M., Bertram, M., Seidensticker, J., Tschache, A.: A mathematical perspective on post-quantum cryptography. Mathematics 10(15), 2579 (2022)

    Article  Google Scholar 

  22. Shoup, V.: A proposal for an iso standard for public key encryption. Cryptology ePrint Archive (2001)

    Google Scholar 

  23. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in tls 1.3: a performance study. Cryptology ePrint Archive (2020)

    Google Scholar 

  24. Ulitzsch, V., Seifert, J.P.: Breaking the quadratic barrier: Quantum cryptanalysis of milenage, telecommunications’ cryptographic backbone. Cryptology ePrint Archive (2022)

    Google Scholar 

  25. Upama, P.B., et al.: Evolution of quantum computing: A systematic survey on the use of quantum computing tools. arXiv preprint arXiv:2204.01856 (2022)

  26. Wang, Y., Zhang, Z., Xie, Y.: Privacy-preserving and standard-compatible aka protocol for 5g. In: USENIX Security Symposium, pp. 3595–3612 (2021)

    Google Scholar 

  27. Zhang, M., Fang, Y.: Security analysis and enhancements of 3g pp authentication and key agreement protocol. IEEE Trans. Wireless Commun. 4(2), 734–742 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Rossi Figlarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossi Figlarz, G., Passuelo Hessel, F. (2024). Enhancing the 5G-AKA Protocol with Post-quantum Digital Signature Method. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-031-57916-5_9

Download citation

Publish with us

Policies and ethics