Nothing Special   »   [go: up one dir, main page]

Skip to main content

Participatory Observation Methods Within Data-Intensive Science: Formal Evaluation and Sociotechnical Insight

  • Conference paper
  • First Online:
Wisdom, Well-Being, Win-Win (iConference 2024)

Abstract

This paper presents a framework enabling qualitative researchers to gain rich participatory access to study scientific practices within collaborative, funded research projects. Participatory observation methods provide unique access to scientific sites for social studies of science but require authentic and mutually beneficial motivations for qualitative researchers’ participation. We illustrate a successful approach to configuring such collaborations by presenting the case of our participatory observation of an intensive NSF-funded Data-Intensive Science (DIS) training, as members of the evaluation team. We detail how our dual-purpose data collection methods informed both funder-facing evaluation materials and our own subsequent research publications, completed in parallel to the training’s core objectives. We organize our site-specific findings on scientific practice around the themes of Technology, Practices, and Culture. Participatory evaluation of grant-funded science is a rich and under-utilized form of site access for sociotechnical researchers that can facilitate mutually beneficial scientific convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://new.nsf.gov/funding/opportunities/training-based-workforce-development-advanced.

References

  1. NSF: Learn About Convergence Research. https://new.nsf.gov/funding/learn/research-types/learn-about-convergence-research. Accessed 13 Sept 2023

  2. Brzakovic, D.: Growing Convergence Research (GCR) Program Solicitation. National Science Foundation (2019)

    Google Scholar 

  3. Dourish, P.: Implications for design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 541–550. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1124772.1124855

  4. Rode, J.A.: Reflexivity in digital anthropology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 123–132. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1978942.1978961

  5. Dourish, P.: Reading and interpreting ethnography. In: Olson, J.S., Kellogg, W.A. (eds.) Ways of Knowing in HCI, pp. 1–23. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0378-8_1

    Chapter  Google Scholar 

  6. Ribes, D.: STS, meet data science, once again. Sci. Technol. Hum. Values 44, 514–539 (2019). https://doi.org/10.1177/0162243918798899

    Article  Google Scholar 

  7. Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science and technology collaborations. Comput. Support. Coop. Work. (2012)

    Google Scholar 

  8. Slota, S.C., Hoffman, A.S., Ribes, D., Bowker, G.C.: Prospecting (in) the data sciences. Big Data Soc. 7, 2053951720906849 (2020). https://doi.org/10.1177/2053951720906849

    Article  Google Scholar 

  9. Borgman, C.L., et al.: Knowledge infrastructures in science: data, diversity, and digital libraries. Int. J. Digit. Libr. 16, 207–227 (2015). https://doi.org/10.1007/s00799-015-0157-z

    Article  Google Scholar 

  10. Slota, S.C., Hauser, E.: Inverting ecological infrastructures: how temporality structures the work of sustainability. Hist. Soc. Res. 47, 215–241 (2022). https://doi.org/10.12759/hsr.47.2022.45

  11. Leonelli, S., Diehl, A.D., Christie, K.R., Harris, M.A., Lomax, J.: How the gene ontology evolves. BMC Bioinform. 12, 325 (2011). https://doi.org/10.1186/1471-2105-12-325

    Article  Google Scholar 

  12. Leonelli, S.: Classificatory theory in data-intensive science: the case of open biomedical ontologies. Int. Stud. Philos. Sci. 26, 47–65 (2012). https://doi.org/10.1080/02698595.2012.653119

    Article  Google Scholar 

  13. Vertesi, J., Dourish, P.: The value of data: considering the context of production in data economies. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, pp. 533–542. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1958824.1958906

  14. Vertesi, J.: Seeing Like a Rover. University of Chicago Press, Chicago (2015). https://doi.org/10.7208/9780226156019

  15. Goodman, A., et al.: Ten simple rules for the care and feeding of scientific data. PLoS Comput. Biol. 10, e1003542 (2014). https://doi.org/10.1371/journal.pcbi.1003542

    Article  Google Scholar 

  16. Smith, B., Ceusters, W.: Ontological realism: a methodology for coordinated evolution of scientific ontologies. Appl. Ontol. 5, 139–188 (2010). https://doi.org/10.3233/AO-2010-0079

    Article  Google Scholar 

  17. Leonelli, S., Davey, R.P., Arnaud, E., Parry, G., Bastow, R.: Data management and best practice for plant science. Nat Plants. 3, 17086 (2017). https://doi.org/10.1038/nplants.2017.86

    Article  Google Scholar 

  18. Borgman, C.L.: Big data, little data, or no data? Why human interaction with data is a hard problem. In: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, p. 1. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3343413.3377979

  19. Scroggins, M.J., et al.: Thorny problems in data (-intensive) science. Commun. ACM 63, 30–32 (2020). https://doi.org/10.1145/3408047

    Article  Google Scholar 

  20. Suchman, L.: Anthropological relocations and the limits of design. Annu. Rev. Anthropol. 40, 1–18 (2011). https://doi.org/10.1146/annurev.anthro.041608.105640

    Article  Google Scholar 

  21. Read, E.K., et al.: Building the team for team science. Ecosphere. 7, e01291 (2016). https://doi.org/10.1002/ecs2.1291

    Article  Google Scholar 

  22. Spring, B.J., Pfammatter, AFidler, Conroy, D.E.: Continuing professional development for team science. In: Hall, K.L., Vogel, A.L., Croyle, R.T. (eds.) Strategies for Team Science Success, pp. 445–453. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20992-6_34

    Chapter  Google Scholar 

  23. Sawyer, S., Jarrahi, M.: Sociotechnical approaches to the study of information systems. In: Topi, H. Tucker, A. (eds.) Computing Handbook, 3rd edn, pp. 5-1–5-27. Chapman and Hall/CRC, Boca Raton (2014). https://doi.org/10.1201/b16768-7

  24. Feinberg, M., Sutherland, W., Nelson, S.B., Jarrahi, M.H., Rajasekar, A.: The new reality of reproducibility: the role of data work in scientific research. Proc. ACM Hum.-Comput. Interact. 4, 1–22 (2020). https://doi.org/10.1145/3392840

  25. Hauser, E., Sutherland, W.: Temporality in data science education: early results from a grounded theory study of an NSF-funded CyberTraining workshop. In: Sundqvist, A., Berget, G., Nolin, Jan, Skjerdingstad, K.I. (eds.) iConference. LNCS, vol. 12051, pp. 536–544. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43687-2_43

    Chapter  Google Scholar 

  26. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis. SAGE Publications, London (2006)

    Google Scholar 

  27. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, Cambridge (1991). https://doi.org/10.1017/CBO9780511815355

  28. Downey, G., Dalidowicz, M., Mason, P.H.: Apprenticeship as method: embodied learning in ethnographic practice. Qual. Res. 15, 183–200 (2015). https://doi.org/10.1177/1468794114543400

    Article  Google Scholar 

  29. Wilson, G.: Software carpentry: lessons learned. F1000Res 3, 62 (2014). https://doi.org/10.12688/f1000research.3-62.v2

  30. Payne, S.J.: Users’ mental models: the very ideas. In: HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science, pp. 135–156 (2003)

    Google Scholar 

  31. Jackson, S.J., Barbrow, S.: Infrastructure and vocation: field, calling and computation in ecology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2873–2882. Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2470654.2481397

  32. Baker, K.S., Bowker, G.C.: Information ecology: open system environment for data, memories, and knowing (2007). https://doi.org/10.1007/s10844-006-0035-7

  33. Orlikowski, W.J.: Sociomaterial practices: exploring technology at work. Organ. Stud. 28, 1435–1448 (2007). https://doi.org/10.1177/0170840607081138

    Article  Google Scholar 

  34. Pinel, C., Prainsack, B., McKevitt, C.: Caring for data: value creation in a data-intensive research laboratory. Soc. Stud. Sci. 50, 175–197 (2020). https://doi.org/10.1177/0306312720906567

    Article  Google Scholar 

  35. Strauss, A.: The articulation of project work: an organizational process. Sociol. Q. 29, 163–178 (1988). https://doi.org/10.1111/j.1533-8525.1988.tb01249.x

    Article  Google Scholar 

  36. Suchman, L.: Supporting articulation work. In: Kling, R. (ed.) Computerization and Controversy: Value Conflicts and Social Choices, pp. 407–425. Morgan Kaufmann, San Francisco (1996)

    Chapter  Google Scholar 

  37. Goodman, S.N., Fanelli, D., Ioannidis, J.P.A.: What does research reproducibility mean? Sci. Transl. Med. 8, 341ps12 (2016). https://doi.org/10.1126/scitranslmed.aaf5027

  38. Nelson, N.C., Ichikawa, K., Chung, J., Malik, M.M.: Mapping the discursive dimensions of the reproducibility crisis: a mixed methods analysis. PLoS ONE 16, e0254090 (2021). https://doi.org/10.1371/journal.pone.0254090

    Article  Google Scholar 

  39. Leonelli, S.: Data-Centric Biology: A Philosophical Study. University of Chicago Press, Chicago (2016)

    Google Scholar 

  40. Asamoah, D.A., Doran, D., Schiller, S.: Interdisciplinarity in data science pedagogy: a foundational design. J. Comput. Inf. Syst. 60, 370–377 (2020). https://doi.org/10.1080/08874417.2018.1496803

    Article  Google Scholar 

  41. Ribes, D., Hoffman, A.S., Slota, S.C., Bowker, G.C.: The logic of domains. Soc. Stud. Sci. 49, 281–309 (2019). https://doi.org/10.1177/0306312719849709

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF Award #1730390. The authors acknowledge the efforts of Melanie Feinberg, Arcot Rajasekar, Nirav Merchant, Hao Xu, and many others involved in the Cybercarpentry workshops program at UNC Chapel Hill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliott Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hauser, E., Sutherland, W., Jarrahi, M.H. (2024). Participatory Observation Methods Within Data-Intensive Science: Formal Evaluation and Sociotechnical Insight. In: Sserwanga, I., et al. Wisdom, Well-Being, Win-Win. iConference 2024. Lecture Notes in Computer Science, vol 14596. Springer, Cham. https://doi.org/10.1007/978-3-031-57850-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57850-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57849-6

  • Online ISBN: 978-3-031-57850-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics