Abstract
This paper presents a framework enabling qualitative researchers to gain rich participatory access to study scientific practices within collaborative, funded research projects. Participatory observation methods provide unique access to scientific sites for social studies of science but require authentic and mutually beneficial motivations for qualitative researchers’ participation. We illustrate a successful approach to configuring such collaborations by presenting the case of our participatory observation of an intensive NSF-funded Data-Intensive Science (DIS) training, as members of the evaluation team. We detail how our dual-purpose data collection methods informed both funder-facing evaluation materials and our own subsequent research publications, completed in parallel to the training’s core objectives. We organize our site-specific findings on scientific practice around the themes of Technology, Practices, and Culture. Participatory evaluation of grant-funded science is a rich and under-utilized form of site access for sociotechnical researchers that can facilitate mutually beneficial scientific convergence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
NSF: Learn About Convergence Research. https://new.nsf.gov/funding/learn/research-types/learn-about-convergence-research. Accessed 13 Sept 2023
Brzakovic, D.: Growing Convergence Research (GCR) Program Solicitation. National Science Foundation (2019)
Dourish, P.: Implications for design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 541–550. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1124772.1124855
Rode, J.A.: Reflexivity in digital anthropology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 123–132. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1978942.1978961
Dourish, P.: Reading and interpreting ethnography. In: Olson, J.S., Kellogg, W.A. (eds.) Ways of Knowing in HCI, pp. 1–23. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0378-8_1
Ribes, D.: STS, meet data science, once again. Sci. Technol. Hum. Values 44, 514–539 (2019). https://doi.org/10.1177/0162243918798899
Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science and technology collaborations. Comput. Support. Coop. Work. (2012)
Slota, S.C., Hoffman, A.S., Ribes, D., Bowker, G.C.: Prospecting (in) the data sciences. Big Data Soc. 7, 2053951720906849 (2020). https://doi.org/10.1177/2053951720906849
Borgman, C.L., et al.: Knowledge infrastructures in science: data, diversity, and digital libraries. Int. J. Digit. Libr. 16, 207–227 (2015). https://doi.org/10.1007/s00799-015-0157-z
Slota, S.C., Hauser, E.: Inverting ecological infrastructures: how temporality structures the work of sustainability. Hist. Soc. Res. 47, 215–241 (2022). https://doi.org/10.12759/hsr.47.2022.45
Leonelli, S., Diehl, A.D., Christie, K.R., Harris, M.A., Lomax, J.: How the gene ontology evolves. BMC Bioinform. 12, 325 (2011). https://doi.org/10.1186/1471-2105-12-325
Leonelli, S.: Classificatory theory in data-intensive science: the case of open biomedical ontologies. Int. Stud. Philos. Sci. 26, 47–65 (2012). https://doi.org/10.1080/02698595.2012.653119
Vertesi, J., Dourish, P.: The value of data: considering the context of production in data economies. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, pp. 533–542. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1958824.1958906
Vertesi, J.: Seeing Like a Rover. University of Chicago Press, Chicago (2015). https://doi.org/10.7208/9780226156019
Goodman, A., et al.: Ten simple rules for the care and feeding of scientific data. PLoS Comput. Biol. 10, e1003542 (2014). https://doi.org/10.1371/journal.pcbi.1003542
Smith, B., Ceusters, W.: Ontological realism: a methodology for coordinated evolution of scientific ontologies. Appl. Ontol. 5, 139–188 (2010). https://doi.org/10.3233/AO-2010-0079
Leonelli, S., Davey, R.P., Arnaud, E., Parry, G., Bastow, R.: Data management and best practice for plant science. Nat Plants. 3, 17086 (2017). https://doi.org/10.1038/nplants.2017.86
Borgman, C.L.: Big data, little data, or no data? Why human interaction with data is a hard problem. In: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, p. 1. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3343413.3377979
Scroggins, M.J., et al.: Thorny problems in data (-intensive) science. Commun. ACM 63, 30–32 (2020). https://doi.org/10.1145/3408047
Suchman, L.: Anthropological relocations and the limits of design. Annu. Rev. Anthropol. 40, 1–18 (2011). https://doi.org/10.1146/annurev.anthro.041608.105640
Read, E.K., et al.: Building the team for team science. Ecosphere. 7, e01291 (2016). https://doi.org/10.1002/ecs2.1291
Spring, B.J., Pfammatter, AFidler, Conroy, D.E.: Continuing professional development for team science. In: Hall, K.L., Vogel, A.L., Croyle, R.T. (eds.) Strategies for Team Science Success, pp. 445–453. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20992-6_34
Sawyer, S., Jarrahi, M.: Sociotechnical approaches to the study of information systems. In: Topi, H. Tucker, A. (eds.) Computing Handbook, 3rd edn, pp. 5-1–5-27. Chapman and Hall/CRC, Boca Raton (2014). https://doi.org/10.1201/b16768-7
Feinberg, M., Sutherland, W., Nelson, S.B., Jarrahi, M.H., Rajasekar, A.: The new reality of reproducibility: the role of data work in scientific research. Proc. ACM Hum.-Comput. Interact. 4, 1–22 (2020). https://doi.org/10.1145/3392840
Hauser, E., Sutherland, W.: Temporality in data science education: early results from a grounded theory study of an NSF-funded CyberTraining workshop. In: Sundqvist, A., Berget, G., Nolin, Jan, Skjerdingstad, K.I. (eds.) iConference. LNCS, vol. 12051, pp. 536–544. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43687-2_43
Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis. SAGE Publications, London (2006)
Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, Cambridge (1991). https://doi.org/10.1017/CBO9780511815355
Downey, G., Dalidowicz, M., Mason, P.H.: Apprenticeship as method: embodied learning in ethnographic practice. Qual. Res. 15, 183–200 (2015). https://doi.org/10.1177/1468794114543400
Wilson, G.: Software carpentry: lessons learned. F1000Res 3, 62 (2014). https://doi.org/10.12688/f1000research.3-62.v2
Payne, S.J.: Users’ mental models: the very ideas. In: HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science, pp. 135–156 (2003)
Jackson, S.J., Barbrow, S.: Infrastructure and vocation: field, calling and computation in ecology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2873–2882. Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2470654.2481397
Baker, K.S., Bowker, G.C.: Information ecology: open system environment for data, memories, and knowing (2007). https://doi.org/10.1007/s10844-006-0035-7
Orlikowski, W.J.: Sociomaterial practices: exploring technology at work. Organ. Stud. 28, 1435–1448 (2007). https://doi.org/10.1177/0170840607081138
Pinel, C., Prainsack, B., McKevitt, C.: Caring for data: value creation in a data-intensive research laboratory. Soc. Stud. Sci. 50, 175–197 (2020). https://doi.org/10.1177/0306312720906567
Strauss, A.: The articulation of project work: an organizational process. Sociol. Q. 29, 163–178 (1988). https://doi.org/10.1111/j.1533-8525.1988.tb01249.x
Suchman, L.: Supporting articulation work. In: Kling, R. (ed.) Computerization and Controversy: Value Conflicts and Social Choices, pp. 407–425. Morgan Kaufmann, San Francisco (1996)
Goodman, S.N., Fanelli, D., Ioannidis, J.P.A.: What does research reproducibility mean? Sci. Transl. Med. 8, 341ps12 (2016). https://doi.org/10.1126/scitranslmed.aaf5027
Nelson, N.C., Ichikawa, K., Chung, J., Malik, M.M.: Mapping the discursive dimensions of the reproducibility crisis: a mixed methods analysis. PLoS ONE 16, e0254090 (2021). https://doi.org/10.1371/journal.pone.0254090
Leonelli, S.: Data-Centric Biology: A Philosophical Study. University of Chicago Press, Chicago (2016)
Asamoah, D.A., Doran, D., Schiller, S.: Interdisciplinarity in data science pedagogy: a foundational design. J. Comput. Inf. Syst. 60, 370–377 (2020). https://doi.org/10.1080/08874417.2018.1496803
Ribes, D., Hoffman, A.S., Slota, S.C., Bowker, G.C.: The logic of domains. Soc. Stud. Sci. 49, 281–309 (2019). https://doi.org/10.1177/0306312719849709
Acknowledgements
This research was supported by NSF Award #1730390. The authors acknowledge the efforts of Melanie Feinberg, Arcot Rajasekar, Nirav Merchant, Hao Xu, and many others involved in the Cybercarpentry workshops program at UNC Chapel Hill.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hauser, E., Sutherland, W., Jarrahi, M.H. (2024). Participatory Observation Methods Within Data-Intensive Science: Formal Evaluation and Sociotechnical Insight. In: Sserwanga, I., et al. Wisdom, Well-Being, Win-Win. iConference 2024. Lecture Notes in Computer Science, vol 14596. Springer, Cham. https://doi.org/10.1007/978-3-031-57850-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-57850-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57849-6
Online ISBN: 978-3-031-57850-2
eBook Packages: Computer ScienceComputer Science (R0)