Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Discrete Geometry Method for Atom Depth Computation in Complex Molecular Systems

  • Conference paper
Discrete Geometry and Mathematical Morphology (DGMM 2024)

Abstract

The field of structural biology is rapidly advancing thanks to significant improvements in X-ray crystallography, nuclear magnetic resonance (NMR), cryo-electron microscopy, and bioinformatics. The identification of structural descriptors allows for the correlation of functional properties with characteristics such as accessible molecular surfaces, volumes, and binding sites. Atom depth has been recognized as an additional structural feature that links protein structures to their folding and functional properties. In the case of proteins, the atom depth is typically defined as the distance between the atom and the nearest surface point or nearby water molecule.

In this paper, we propose a discrete geometry method to calculate the depth index with an alternative approach that takes into account the local molecular shape of the protein. To compute atom depth indices, we measure the volume of the intersection between the molecule and a sphere with an appropriate reference radius, centered on the atom for which we want to quantify the depth.

We validate our method on proteins of diverse shapes and sizes and compare it with metrics based on the distance to the nearest water molecule from bulk solvent to demonstrate its effectiveness.

S. Marziali, G. Nunziati and A. L. Prete—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batsanov, S.S.: Van der Waals radii of elements. Inorg. Mater. 37(9), 871–885 (2001)

    Article  Google Scholar 

  2. Chakravarty, S., Varadarajan, R.: Residue depth: a novel parameter for the analysis of protein structure and stability. Structure 7(7), 723–732 (1999)

    Article  Google Scholar 

  3. Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 437–448 (2007)

    Article  Google Scholar 

  4. Connolly, M.L.: The molecular surface package. J. Mol. Graph. 11(2), 139–141 (1993)

    Article  Google Scholar 

  5. Deeb, Z.A., Adjeroh, D.A., Jiang, B.H.: Protein surface characterization using an invariant descriptor. J. Biomed. Imaging 2011, 2 (2011)

    Google Scholar 

  6. Fernández-Recio, J., Totrov, M., Abagyan, R.: Soft protein-protein docking in internal coordinates. Protein Sci. 11(2), 280–291 (2002)

    Article  Google Scholar 

  7. Gonzalez, R.C.: Digital Image Processing. Pearson Education India (2009)

    Google Scholar 

  8. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recogn. 70, 25–43 (2017)

    Article  Google Scholar 

  9. Kihara, D., Sael, L., Chikhi, R., Esquivel-Rodriguez, J.: Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr. Protein Pept. Sci. 12, 520–530 (2011). https://doi.org/10.2174/138920311796957612

    Article  Google Scholar 

  10. Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379–IN4 (1971)

    Google Scholar 

  11. Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25, 265–270 (2003). https://api.semanticscholar.org/CorpusID:1708973

  12. Pedersen, T.G., et al.: A nuclear magnetic resonance study of the hydrogen-exchange behaviour of lysozyme in crystals and solution. J. Mol. Biol. 218(2), 413–426 (1991)

    Article  Google Scholar 

  13. Pintar, A., Carugo, O., Pongor, S.: DPX: for the analysis of the protein core. Bioinformatics 19(2), 313–314 (2003)

    Article  Google Scholar 

  14. Pintar, A., Carugo, O., Pongor, S.: Atom depth in protein structure and function. Trends Biochem. Sci. 28(11), 593–597 (2003). https://doi.org/10.1016/j.tibs.2003.09.004. https://www.sciencedirect.com/science/article/pii/S0968000403002287

  15. Soille, P., et al.: Morphological Image Analysis: Principles and Applications, vol. 2. Springer, Cham (1999)

    Book  Google Scholar 

  16. Tan, K.P., Nguyen, T.B., Patel, S., Varadarajan, R., Madhusudhan, M.S.: Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res. 41(W1), W314–W321 (2013). https://doi.org/10.1093/nar/gkt503

  17. Varrazzo, D.: Simple atom depth index calculator (2006)

    Google Scholar 

  18. Varrazzo, D., et al.: Three-dimensional computation of atom depth in complex molecular structures. Bioinformatics 21(12), 2856–2860 (2005)

    Article  Google Scholar 

  19. Yin, S., Proctor, E.A., Lugovskoy, A.A., Dokholyan, N.V.: Fast screening of protein surfaces using geometric invariant fingerprints. Proc. Natl. Acad. Sci. 106(39), 16622–16626 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Italian Ministry of University and Research as part of the PNRR project “THE - Tuscany Health Ecosystem”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Marziali .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Marziali, S., Nunziati, G., Prete, A.L., Niccolai, N., Brunetti, S., Bianchini, M. (2024). A Discrete Geometry Method for Atom Depth Computation in Complex Molecular Systems. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57793-2_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57792-5

  • Online ISBN: 978-3-031-57793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics