Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hardest Monotone Functions for Evolutionary Algorithms

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14632))

Abstract

The hardness of optimizing monotone functions using the \((1+1)\)-EA has been an open problem for a long time. By introducing a more pessimistic stochastic process, the partially-ordered evolutionary algorithm (PO-EA) model, Jansen proved a runtime bound of \(O(n^{3/2})\). In 2019, Lengler, Martinsson and Steger improved this upper bound to \(O(n \log ^2 n)\) leveraging an entropy compression argument. We continue this line of research by analyzing monotone functions that may vary at each step, so-called dynamic monotone functions. We introduce the function Switching Dynamic BinVal (SDBV) and prove, using a combinatorial argument, that for the \((1+1)\)-EA, SDBV is drift minimizing within the class of dynamic monotone functions. We further show that the \((1+1)\)-EA optimizes SDBV in \(\varTheta (n^{3/2})\) generations. Therefore, our construction provides the first explicit example which realizes the pessimism of the PO-EA model. Our simulations demonstrate matching runtimes for both static and self-adjusting \((1,\lambda )\) and \((1+\lambda )\)-EA. We additionally demonstrate, devising an example of fixed dimension, that drift minimization does not equal maximal runtime.

M. Kaufmann—The author was supported by the Swiss National Science Foundation [grant number 200021_192079].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, either the offspring dominates the parent, or vice-versa.

  2. 2.

    The latter result was claimed in [18], but the proof contained an error. It was later proven in [2].

  3. 3.

    We note that due to page limitations, we omit many of the proofs. The full version is provided in the supplementary material.

  4. 4.

    Here the \(\tilde{O}(n)\) hides potential polylogarithmic factors of n.

  5. 5.

    Note that there are several ways of choosing \(\sigma _A, \sigma _F\) satisfying those properties, as we may permute any \(0\)-bit with another \(0\)-bit, and similarly for the \(1\)-bits. As properties we study hold regardless of the precise selection of \(\sigma _A, \sigma _F\), we make a slight abuse of notation and talk of the function ADBV and the function FDBV.

  6. 6.

    For readability, the final results are then rounded to 4 digits. The code is available at https://github.com/OliverSieberling/SDBV-EA.

  7. 7.

    Actually, the PO-EA\(^-\); see [2] for the details.

  8. 8.

    One should consider \(\tilde{t}\) to be chosen as a very small multiple of \(n^{3/2}\), so that progress towards the optimum is small in expectation.

  9. 9.

    The code is available at https://github.com/OliverSieberling/SDBV-EA.

References

  1. Buskulic, N., Doerr, C.: Maximizing drift is not optimal for solving OneMax. Evol. Comput. 29(4), 521–541 (2021)

    Article  Google Scholar 

  2. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone! In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760 (2014)

    Google Scholar 

  3. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2), 714–740 (2017)

    Article  MathSciNet  Google Scholar 

  4. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. Theor. Comput. Sci. 801, 1–34 (2020)

    Article  MathSciNet  Google Scholar 

  5. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+ \(\lambda \)) evolutionary algorithm with self-adjusting mutation rate. Algorithmica 81, 593–631 (2019)

    Article  MathSciNet  Google Scholar 

  6. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Optimizing monotone functions can be difficult. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 42–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_5

    Chapter  Google Scholar 

  7. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

    Article  Google Scholar 

  8. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  9. Doerr, B., Künnemann, M.: How the (1+ \(\lambda \)) evolutionary algorithm optimizes linear functions. Theor. Comput. Sci. 561, 3–23 (2015)

    Article  Google Scholar 

  10. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary Computation Conference (GECCO) (2017)

    Google Scholar 

  11. Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1015–1022 (2018)

    Google Scholar 

  12. Doerr, C., Janett, D.A., Lengler, J.: Tight runtime bounds for static unary unbiased evolutionary algorithms on linear functions. In: Genetic and Evolutionary Computation Conference (GECCO) (2023)

    Google Scholar 

  13. Doerr, C., Wagner, M.: Simple on-the-fly parameter selection mechanisms for two classical discrete black-box optimization benchmark problems. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 943–950 (2018)

    Google Scholar 

  14. He, J., Chen, T., Yao, X.: On the easiest and hardest fitness functions. IEEE Trans. Evol. Comput. 19(2), 295–305 (2014)

    Article  Google Scholar 

  15. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. Algorithmica 86, 526–565 (2024)

    Article  MathSciNet  Google Scholar 

  16. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when not. In: Foundations of Computational Intelligence (FOCI), pp. 25–32. IEEE (2007)

    Google Scholar 

  17. Janett, D., Lengler, J.: Two-dimensional drift analysis: optimizing two functions simultaneously can be hard. Theor. Comput. Sci. 971, 114072 (2023)

    Article  MathSciNet  Google Scholar 

  18. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_4

    Chapter  Google Scholar 

  19. Jansen, T., Jong, K.A.D., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evol. Comput. 13(4), 413–440 (2005)

    Article  Google Scholar 

  20. Jorritsma, J., Lengler, J., Sudholt, D.: Comma selection outperforms plus selection on OneMax with randomly planted optima. In: Genetic and Evolutionary Computation Conference (GECCO) (2023)

    Google Scholar 

  21. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for the \((1, \lambda )\)-EA on monotone functions. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) PPSN 2022. LNCS, vol. 13399, pp. 569–585. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14721-0_40

    Chapter  Google Scholar 

  22. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: OneMax is not the easiest function for fitness improvements. In: Pérez Cáceres, L., Stützle, T. (eds.) EvoCOP 2023. LNCS, vol. 13987, pp. 162–178. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30035-6_11

    Chapter  Google Scholar 

  23. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for the (1, \(\lambda \))-EA on monotone functions. Theor. Comput. Sci. 979, 114181 (2023)

    Article  MathSciNet  Google Scholar 

  24. Lässig, J., Sudholt, D.: General scheme for analyzing running times of parallel evolutionary algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 234–243. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-15844-5_24

    Chapter  Google Scholar 

  25. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Foundations of Genetic Algorithms (FOGA), pp. 181–192 (2011)

    Google Scholar 

  26. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

    Article  Google Scholar 

  27. Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation. NCS, pp. 89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2

    Chapter  Google Scholar 

  28. Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone functions: an entropy compression argument. In: Analytic Algorithmics and Combinatorics (ANALCO), pp. 94–102. SIAM (2019)

    Google Scholar 

  29. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_42

    Chapter  Google Scholar 

  30. Lengler, J., Riedi, S.: Runtime analysis of the \((\mu + 1)\)-EA on the dynamic BinVal function. In: Zarges, C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp. 84–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72904-2_6

    Chapter  Google Scholar 

  31. Lengler, J., Schaller, U.: The \((1+1)\)-EA on noisy linear functions with random positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp. 712–719. IEEE (2018)

    Google Scholar 

  32. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27(4), 643–666 (2018)

    Article  MathSciNet  Google Scholar 

  33. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the \((\mu + 1)\)-EA on monotone functions. Theor. Comput. Sci. 875, 28–51 (2021)

    Article  MathSciNet  Google Scholar 

  34. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 835–842 (2009)

    Google Scholar 

  35. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theor. Comput. Sci. 545, 20–38 (2014)

    Article  MathSciNet  Google Scholar 

  36. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2012)

    Article  Google Scholar 

  37. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Kaufmann, M., Larcher, M., Lengler, J., Sieberling, O. (2024). Hardest Monotone Functions for Evolutionary Algorithms. In: Stützle, T., Wagner, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2024. Lecture Notes in Computer Science, vol 14632. Springer, Cham. https://doi.org/10.1007/978-3-031-57712-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57712-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57711-6

  • Online ISBN: 978-3-031-57712-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics