Nothing Special   »   [go: up one dir, main page]

Skip to main content

Numerical Determination of Time-Dependent Volatility for American Option When the Optimal Exercise Boundary Is Known

  • Conference paper
  • First Online:
Large-Scale Scientific Computations (LSSC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13952))

Included in the following conference series:

  • 254 Accesses

Abstract

The paper is devoted on developing a robust free-boundary based method for reconstruction time-dependent volatility of American put options. This problem is posed as an inverse problem: given the optimal exercise boundary, find the volatility function. We propose a linearization refereed to the semi-time layers algorithm of decomposition of the approximate solution for which the transition to the new time level is carried out by two ODE problems. The correctness of the method is discussed. We test the efficiency of the approach for synthetic and close to deal market data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Company, R., Egorova, V.N., Jódar, L.: Solving American option pricing models by the front fixing method: numerical analysis and computing. In: Abstract and Applied Analysis (2014). Article ID 146745

    Google Scholar 

  2. Deng, Z.C., Hon, Y.C., Isakov, V.: Recovery of the time-dependent volatility in option pricing model. Inv. Probl. 32(11), 115010 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ehrhardt, M., Mickens, R.: A fast, stable and accurate numerical method for the Black-Scholes equation of American options. Int. J. Theoret. Appl. Finance 11(5), 471–501 (2008)

    Article  MathSciNet  Google Scholar 

  4. Georgiev, S., Vulkov, L.: Numerical determination of time-dependent implied volatility by a point observation. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds.) Advanced Computing in Industrial Mathematics. Studies in Computational Intelligence, vol. 961, pp. 99–109. Springer, Cham (2021)

    Google Scholar 

  5. Georgiev, S.G., Vulkov, L.G.: Fast reconstruction of time-dependent market volatility for European options. Comp. Appl. Math. 40, 30 (2021)

    Article  MathSciNet  Google Scholar 

  6. Ghanmi, C., Aouadi, S.M., Triki, F.: Identification of a boundary influx condition in a one-phase Stefan problem. Appl. Anal. 101(18), 6573–6595 (2022)

    Article  MathSciNet  Google Scholar 

  7. Gyulov, T.B., Valkov, R.L.: American option pricing problem transformed on finite interval. Int. J. Comput. Math. 93, 821–836 (2016)

    Article  MathSciNet  Google Scholar 

  8. Jiang, L.: Mathematical Modeling and Methods of Option Pricing, p. 344. World Scientific, Singapore (2005)

    Book  Google Scholar 

  9. Kandilarov, J.D., Valkov, R.L.: A numerical approach for the American call option pricing model. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) Numerical Methods and Applications. Lecture Notes in Computer Science, vol. 6046, pp. 453–460. Springer, Berlin (2010)

    Chapter  Google Scholar 

  10. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000)

    Article  MathSciNet  Google Scholar 

  11. Samuelson, P.A.: Rational Theory of Warrant Pricing. Ind. Manage. Rev. 6(2), 13 (1965)

    Google Scholar 

  12. Ševčovič, D.: Analysis of the free boundary for the pricing of an American call option. Eur. J. Appl. Math. 12(1), 25–37 (2001)

    Article  MathSciNet  Google Scholar 

  13. Valkov, R.: Fitted finite volume method for a generalized Black-Scholes equation transformed on finite interval. Numer. Algor. 65, 195–220 (2014)

    Article  MathSciNet  Google Scholar 

  14. Windcliff, H., Forsyth, P., Vetzal, K.R.: Analysis of the stability of the linear boundary condition for the Black-Scholes equation. J. Comput. Finan. 8, 65–92 (2004)

    Article  Google Scholar 

  15. Wu, L., Kwok, Y.K.: A front-fixing method for the valuation of American option. J. Finan. Eng. 6(2), 83–97 (1997)

    Google Scholar 

  16. Zhang, K., Teo, K.L.: A penalty-based method from reconstructing smooth local volatility surface from American options. J. Ind. Manage. Optim. 11(2), 631–644 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Bulgarian National Science Fund under Project KP-06-N 62/3 from 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miglena N. Koleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koleva, M.N., Vulkov, L.G. (2024). Numerical Determination of Time-Dependent Volatility for American Option When the Optimal Exercise Boundary Is Known. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computations. LSSC 2023. Lecture Notes in Computer Science, vol 13952. Springer, Cham. https://doi.org/10.1007/978-3-031-56208-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56208-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56207-5

  • Online ISBN: 978-3-031-56208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics