Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Reproducibility Study of Goldilocks: Just-Right Tuning of BERT for TAR

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Abstract

Screening documents is a tedious and time-consuming aspect of high-recall retrieval tasks, such as compiling a systematic literature review, where the goal is to identify all relevant documents for a topic. To help streamline this process, many Technology-Assisted Review (TAR) methods leverage active learning techniques to reduce the number of documents requiring review. BERT-based models have shown high effectiveness in text classification, leading to interest in their potential use in TAR workflows. In this paper, we investigate recent work that examined the impact of further pre-training epochs on the effectiveness and efficiency of a BERT-based active learning pipeline. We first report that we could replicate the original experiments on two specific TAR datasets, confirming some of the findings: importantly, that further pre-training is critical to high effectiveness, but requires attention in terms of selecting the correct training epoch. We then investigate the generalisability of the pipeline on a different TAR task, that of medical systematic reviews. In this context, we show that there is no need for further pre-training if a domain-specific BERT backbone is used within the active learning pipeline. This finding provides practical implications for using the studied active learning pipeline within domain-specific TAR tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/stable/.

  2. 2.

    https://huggingface.co/bert-base-cased.

  3. 3.

    https://github.com/ntucllab/libact.

References

  1. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555 (2020)

  2. Cormack, G.V., Grossman, M.R.: Evaluation of machine-learning protocols for technology-assisted review in electronic discovery. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 153–162 (2014)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  4. Grossman, M.R., Cormack, G.V.: Technology-assisted review in e-discovery can be more effective and more efficient than exhaustive manual review. Richmond J. Law Technol. 17(3), 11 (2011)

    Google Scholar 

  5. Grossman, M.R., Cormack, G.V., Roegiest, A.: TREC 2016 total recall track overview. In: TREC (2016)

    Google Scholar 

  6. He, P., Gao, J., Chen, W.: DeBERTaV 3: improving DeBERTa using electra-style pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543 (2021)

  7. He, P., Liu, X., Gao, J., Chen, W.: DeBERTa: decoding-enhanced BERT with disentangled attention. arXiv preprint arXiv:2006.03654 (2020)

  8. Kanoulas, E., Li, D., Azzopardi, L., Spijker, R.: CLEF 2017 technologically assisted reviews in empirical medicine overview. In: CLEF 2017 (2017)

    Google Scholar 

  9. Kanoulas, E., Li, D., Azzopardi, L., Spijker, R.: CLEF 2018 technologically assisted reviews in empirical medicine overview. In: CEUR Workshop Proceedings, vol. 2125 (2018)

    Google Scholar 

  10. Kanoulas, E., Li, D., Azzopardi, L., Spijker, R.: CLEF 2019 technology assisted reviews in empirical medicine overview. In: CEUR Workshop Proceedings, vol. 2380 (2019)

    Google Scholar 

  11. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906 (2020)

  12. Lewis, D.D.: A sequential algorithm for training text classifiers: corrigendum and additional data. ACM SIGIR Forum 29, 13–19 (1995). ACM New York, NY, USA

    Google Scholar 

  13. Lewis, D.D., Yang, Y., Russell-Rose, T., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5(Apr), 361–397 (2004)

    Google Scholar 

  14. Lin, J., Nogueira, R., Yates, A.: Pretrained transformers for text ranking: BERT and beyond. Synth. Lect. Hum. Lang. Technol. 14(4), 1–325 (2021)

    Google Scholar 

  15. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. arXiv preprint arXiv:1908.08345 (2019)

  16. Lupu, M., Salampasis, M., Hanbury, A.: Domain specific search. In: Professional Search in the Modern World: COST Action IC1002 on Multilingual and Multifaceted Interactive Information Access, pp. 96–117 (2014)

    Google Scholar 

  17. Michelson, M., Reuter, K.: The significant cost of systematic reviews and meta-analyses: a call for greater involvement of machine learning to assess the promise of clinical trials. Contemp. Clin. Trials Commun. 16, 100443 (2019). https://doi.org/10.1016/j.conctc.2019.100443, https://www.sciencedirect.com/science/article/pii/S2451865419302054

  18. Molinari, A., Kanoulas, E.: Transferring knowledge between topics in systematic reviews. Intell. Syst. Appl. 16, 200150 (2022)

    Google Scholar 

  19. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  20. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

    MathSciNet  Google Scholar 

  21. Roegiest, A., Cormack, G.V., Clarke, C.L., Grossman, M.R.: TREC 2015 total recall track overview. In: TREC (2015)

    Google Scholar 

  22. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. J. Am. Soc. Inf. Sci. 41(4), 288–297 (1990)

    Article  Google Scholar 

  23. Singh, G., Thomas, J., Shawe-Taylor, J.: Improving active learning in systematic reviews. arXiv preprint arXiv:1801.09496 (2018)

  24. Tonellotto, N.: Lecture notes on neural information retrieval. arXiv preprint arXiv:2207.13443 (2022)

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Yang, E., Lewis, D.D., Frieder, O.: On minimizing cost in legal document review workflows. In: Proceedings of the 21st ACM Symposium on Document Engineering, pp. 1–10 (2021)

    Google Scholar 

  27. Yang, E., Lewis, D.D., Frieder, O., Grossman, D.A., Yurchak, R.: Retrieval and richness when querying by document. In: DESIRES, pp. 68–75 (2018)

    Google Scholar 

  28. Yang, E., MacAvaney, S., Lewis, D.D., Frieder, O.: Goldilocks: just-right tuning of BERT for technology-assisted review. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 502–517. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99736-6_34

    Chapter  Google Scholar 

  29. Yasunaga, M., Leskovec, J., Liang, P.: LinkBERT: pretraining language models with document links. arXiv preprint arXiv:2203.15827 (2022)

Download references

Acknowledgment

Xinyu Mao is supported by a UQ Earmarked PhD Scholarship and this research is funded by the Australian Research Council Discovery Projects programme ARC DP DP210104043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, X., Koopman, B., Zuccon, G. (2024). A Reproducibility Study of Goldilocks: Just-Right Tuning of BERT for TAR. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14611. Springer, Cham. https://doi.org/10.1007/978-3-031-56066-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56066-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56065-1

  • Online ISBN: 978-3-031-56066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics