Nothing Special   »   [go: up one dir, main page]

Skip to main content

CoactSeg: Learning from Heterogeneous Data for New Multiple Sclerosis Lesion Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

Abstract

New lesion segmentation is essential to estimate the disease progression and therapeutic effects during multiple sclerosis (MS) clinical treatments. However, the expensive data acquisition and expert annotation restrict the feasibility of applying large-scale deep learning models. Since single-time-point samples with all-lesion labels are relatively easy to collect, exploiting them to train deep models is highly desirable to improve new lesion segmentation. Therefore, we proposed a coaction segmentation (CoactSeg) framework to exploit the heterogeneous data (i.e., new-lesion annotated two-time-point data and all-lesion annotated single-time-point data) for new MS lesion segmentation. The CoactSeg model is designed as a unified model, with the same three inputs (the baseline, follow-up, and their longitudinal brain differences) and the same three outputs (the corresponding all-lesion and new-lesion predictions), no matter which type of heterogeneous data is being used. Moreover, a simple and effective relation regularization is proposed to ensure the longitudinal relations among the three outputs to improve the model learning. Extensive experiments demonstrate that utilizing the heterogeneous data and the proposed longitudinal relation constraint can significantly improve the performance for both new-lesion and all-lesion segmentation tasks. Meanwhile, we also introduce an in-house MS-23v1 dataset, including 38 Oceania single-time-point samples with all-lesion labels. Codes and the dataset are released at https://github.com/ycwu1997/CoactSeg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://portal.fli-iam.irisa.fr/msseg-2/.

  2. 2.

    https://www.nitrc.org/projects/mricron/.

References

  1. Carass, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148, 77–102 (2017)

    Google Scholar 

  2. Commowick, O., Cervenansky, F., Cotton, F., Dojat, M.: Msseg-2 challenge proceedings: multiple sclerosis new lesions segmentation challenge using a data management and processing infrastructure. In: MICCAI 2021, p. 126 (2021)

    Google Scholar 

  3. Commowick, O., et al.: Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Sci. Rep. 8(1), 13650 (2018)

    Google Scholar 

  4. Commowick, O., et al.: Multiple sclerosis lesions segmentation from multiple experts: the MICCAI 2016 challenge dataset. Neuroimage 244, 118589 (2021)

    Google Scholar 

  5. Gessert, N., et al.: 4d deep learning for multiple-sclerosis lesion activity segmentation. In: MIDL 2020 (2020)

    Google Scholar 

  6. Gessert, N., et al.: Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs. Computer. Med. Imaging Graph. 84, 101772 (2020)

    Google Scholar 

  7. Gold, R., et al.: Placebo-controlled phase 3 study of oral bg-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367(12), 1098–1107 (2012)

    Google Scholar 

  8. He, T., et al.: MS or not MS: T2-weighted imaging (t2wi)-based radiomic findings distinguish MS from its mimics. Multip. Sclerosis Relat. Disord. 61, 103756 (2022)

    Google Scholar 

  9. Krüger, J., et al.: Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3d convolutional neural networks. NeuroImage: Clin. 28, 102445 (2020)

    Google Scholar 

  10. La Rosa, F., et al.: Multiple sclerosis cortical and WM lesion segmentation at 3t MRI: a deep learning method based on flair and mp2rage. NeuroImage: Clin. 27, 102335 (2020)

    Google Scholar 

  11. Ma, Y., et al.: Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications. IEEE J. Biomed. Health Inf. 26(6), 2680–2692 (2022)

    Google Scholar 

  12. Macar, U., Karthik, E.N., Gros, C., Lemay, A., Cohen-Adad, J.: Team neuropoly: description of the pipelines for the MICCAI 2021 MS new lesions segmentation challenge. arXiv preprint arXiv:2109.05409 (2021)

  13. Maier-Hein, L., et al.: Metrics reloaded: pitfalls and recommendations for image analysis validation. arXiv preprint arXiv:2206.01653 (2022)

  14. Mariano, C., Yuling, L., Kain, K., Linda, L., Chenyu, W., Michael, B.: Estimating lesion activity through feature similarity: a dual path UNET approach for the msseg2 MICCAI challenge. https://github.com/marianocabezas/msseg2

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV 2016, pp. 565–571 (2016)

    Google Scholar 

  16. Rakić, M., et al.: icobrain MS 5.1: combining unsupervised and supervised approaches for improving the detection of multiple sclerosis lesions. NeuroImage: Clin. 31, 102707 (2021)

    Google Scholar 

  17. Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B.: Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4), 1402–1418 (2012)

    Article  Google Scholar 

  18. Schell, M., et al.: Automated brain extraction of multi-sequence MRI using artificial neural networks. In: Human Brain Mapping, pp. 1–13 (2019)

    Google Scholar 

  19. Sharmin, S., et al.: Confirmed disability progression as a marker of permanent disability in multiple sclerosis. Eur. J. Neurol. 29(8), 2321–2334 (2022)

    Google Scholar 

  20. Tang, Z., Cabezas, M., Liu, D., Barnett, M., Cai, W., Wang, C.: LG-net: lesion gate network for multiple sclerosis lesion inpainting. In: de Bruijne, M. et al. (eds.) MICCAI 2021, pp. 660–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_62

  21. Wolleb, J., et al.: Learn to ignore: domain adaptation for multi-site MRI analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, pp. 725–735. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_69

  22. Wu, Y., Ge, Z., Zhang, D., Xu, M., Zhang, L., Xia, Y., Cai, J.: Mutual consistency learning for semi-supervised medical image segmentation. Med. Image Anal. 81, 102530 (2022)

    Article  Google Scholar 

  23. Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and class-separation for semi-supervised medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, vol. 13435, pp. 34–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_4

  24. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

  25. Zeng, C., Gu, L., Liu, Z., Zhao, S.: Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI. Front. Neuroinform. 14, 610967 (2020)

    Article  Google Scholar 

  26. Zhang, H., et al.: Qsmrim-net: imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps. NeuroImage: Clin. 34, 102979 (2022)

    Google Scholar 

  27. Zhang, H., Wang, R., Zhang, J., Liu, D., Li, C., Li, J.: Spatially covariant lesion segmentation. arXiv preprint arXiv:2301.07895 (2023)

  28. Zhang, H., et al.: All-net: anatomical information lesion-wise loss function integrated into neural network for multiple sclerosis lesion segmentation. NeuroImage: Clin. 32, 102854 (2021)

    Google Scholar 

  29. Zhang, H., Yuan, X., Nguyen, Q.V.H., Pan, S.: On the interaction between node fairness and edge privacy in graph neural networks. arXiv preprint arXiv:2301.12951 (2023)

  30. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Dodnet: learning to segment multi-organ and tumors from multiple partially labeled datasets. In: CVPR 2021, pp. 1195–1204 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Monash FIT Start-up Grant, in part by the Novartis (ID: 76765455), and in part by the Monash Institute of Medical Engineering (MIME) Project: 2022-13. We here appreciate the public repositories of SNAC [14] and Neuropoly [12], and also thanks for the efforts to collect and share the MS dataset [2] and the MS-23v1 dataset from Alfred Health, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Wu, Z., Shi, H., Picker, B., Chong, W., Cai, J. (2023). CoactSeg: Learning from Heterogeneous Data for New Multiple Sclerosis Lesion Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics