Nothing Special   »   [go: up one dir, main page]

Skip to main content

MSKdeX: Musculoskeletal (MSK) Decomposition from an X-Ray Image for Fine-Grained Estimation of Lean Muscle Mass and Muscle Volume

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Musculoskeletal diseases such as sarcopenia and osteoporosis are major obstacles to health during aging. Although dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) can be used to evaluate musculoskeletal conditions, frequent monitoring is difficult due to the cost and accessibility (as well as high radiation exposure in the case of CT). We propose a method (named MSKdeX) to estimate fine-grained muscle properties from a plain X-ray image, a low-cost, low-radiation, and highly accessible imaging modality, through musculoskeletal decomposition leveraging fine-grained segmentation in CT. We train a multi-channel quantitative image translation model to decompose an X-ray image into projections of CT of individual muscles to infer the lean muscle mass and muscle volume. We propose the object-wise intensity-sum loss, a simple yet surprisingly effective metric invariant to muscle deformation and projection direction, utilizing information in CT and X-ray images collected from the same patient. While our method is basically an unpaired image-to-image translation, we also exploit the nature of the bone’s rigidity, which provides the paired data through 2D-3D rigid registration, adding strong pixel-wise supervision in unpaired training. Through the evaluation using a 539-patient dataset, we showed that the proposed method significantly outperformed conventional methods. The average Pearson correlation coefficient between the predicted and CT-derived ground truth metrics was increased from 0.460 to 0.863. We believe our method opened up a new musculoskeletal diagnosis method and has the potential to be extended to broader applications in multi-channel quantitative image translation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kitamura, A., Seino, S., Takumi, A., et al.: Sarcopenia: prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia Muscle 12(1), 30–38 (2021). https://doi.org/10.1002/jcsm.12651

    Article  Google Scholar 

  2. Chen, L.-K., Lee, W.-J., Peng, L.-N., Liu, L.-K., et al.: Recent advances in sarcopenia research in Asia: 2016 update from the Asian Working Group for Sarcopenia. JAMDA 17(8), 767.e1-767.e7 (2016). https://doi.org/10.1016/j.jamda.2016.05.016

    Article  Google Scholar 

  3. Marzetti, E., Calvani, R., Tosato, M., Cesari, M., et al.: Sacopenia: an overview. Aging Clin. Exp. Res. 29, 11–17 (2017). https://doi.org/10.1007/s40520-016-0704-5

    Article  Google Scholar 

  4. Petermann-Rocha, F., Balntze, V., Gray, S.R., et al.: Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 13(1), 86–99 (2022). https://doi.org/10.1002/jcsm.12783

  5. Shu, X., Lin, T., Wang, H., Zhao, Y., et al.: Diagnosis, prevalence, and mortality of sarcopenia in dialysis patients: a systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 13(1), 145–158 (2022). https://doi.org/10.1002/jcsm.12890

  6. Edwards, M.H., Dennision, E.M., Sayer, A.A., et al.: Osteoporosis and sarcopenia in older age. Bone 80, 126–130 (2015). https://doi.org/10.1016/j.bone.2015.04.016

    Article  Google Scholar 

  7. Shepherd, J., Ng, B., Sommer, M., Heymsfield, S.B.: Body composition by DXA. Bone 104, 101–105 (2017). https://doi.org/10.1016/j.bone.2017.06.010

    Article  Google Scholar 

  8. Nana, A., Slater, G.J., Stewart, A.D., Burke, L.M.: Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int. J. Sport Nutr. Exerc. Metab. 25(2), 198–215 (2015). https://doi.org/10.1123/ijsnem.2013-0228

    Article  Google Scholar 

  9. Feliciano, E.M.C., et al.: Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients. J. Cachexia Sarcopenia Muscle 11(5), 1258–1269 (2020). https://doi.org/10.1002/jcsm.12573

    Article  Google Scholar 

  10. Paris, M.T., Tandon, P., Heyland, D.K., et al.: Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin. Nutr. 39(10), 3049–3055 (2020). https://doi.org/10.1016/j.clnu.2020.01.008

    Article  Google Scholar 

  11. Ogawa, T., Takao, M., et al.: Validation study of the CT-based cross-sectional evaluation of muscular atrophy and fatty degeneration around the pelvis and the femur. J. Orthop. 25(1), 139–144 (2020). https://doi.org/10.1016/j.jos.2019.02.004

    Article  Google Scholar 

  12. Hsieh, C.-I., Zheng, K., Lin, C., Mei, L., et al.: Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning. Nat. Commun. 12(1), 5472 (2021). https://doi.org/10.1038/s41467-021-25779-x

    Article  Google Scholar 

  13. Wang, F., Zheng, K., Lu, Le, et al.: Lumbar bone mineral density estimation from chest X-ray images: anatomy-aware attentive multi-ROI modeling. IEEE Trans. Med. Imaging. 42(1), 257–267 (2023). https://doi.org/10.1109/TMI.2022.3209648

  14. Ho, C.-S., Chen, Y.-P., Fan, T.-Y., Kuo, C.-F., et al.: Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography. Arch. Osteoporosis 16(1), 153 (2021). https://doi.org/10.1007/s11657-021-00985-8

    Article  Google Scholar 

  15. Gu, Y., et al.: BMD-GAN: bone mineral density estimation using X-Ray image decomposition into projections of bone-segmented quantitative computed tomography using hierarchical learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13436, pp. 644–654. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_61

  16. Ryu, J., et al.: Chest X-ray-based opportunistic screening of sarcopenia using deep learning. J. Cachexia Sarcopenia Muscle 14(1), 418–428 (2023). https://doi.org/10.1002/jcsm.13144

    Article  Google Scholar 

  17. Nakanishi, N., Otake, Y., Hiasa, Y., Gu, Y., Uemura, K., et al.: Decomposition of musculoskeletal structures from radiography using an improved CycleGAN framework. Sci. Rep. 13, 8482 (2023). https://doi.org/10.1038/s41598-023-35075-x

    Article  Google Scholar 

  18. Hiasa, Y., Otake, Y., et al.: Automated muscle segmentation from clinical CT using Bayesian U-Net for personalized musculoskeletal modeling. IEEE Trans. Med. Imaging 39(4), 1030–1040 (2019). https://doi.org/10.1109/TMI.2019.2940555

    Article  Google Scholar 

  19. Aubrey, J., Esfandiari, N., Baracos, V.E., Buteau, F.A., et al.: Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. (Oxf) 210(3), 489–497 (2014). https://doi.org/10.1111/apha.12224

    Article  Google Scholar 

  20. Wilfried, S., Thomas, B., Wolfgang, S.: Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys. Med. Biol. 45(2), 459 (2000). https://doi.org/10.1088/0031-9155/45/2/314

    Article  Google Scholar 

  21. Otake, Y., et al.: Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans. Med. Imaging 31(4), 948–962 (2012)

    Article  Google Scholar 

  22. Hiasa, Y., et al.: Cross-modality image synthesis from unpaired data using CycleGAN. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 31–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_4

    Chapter  Google Scholar 

  23. Zhu, J.-Y., Park. T., Isola, P. Efros, A. A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV 2017, pp. 2242–2251 (2017)

    Google Scholar 

  24. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE TPAMI 43(10), 3349–3364 (2021). https://doi.org/10.1109/TPAMI.2020.2983686

    Article  Google Scholar 

Download references

Acknowledgement

The research in this paper was funded by MEXT/JSPS KAKENHI (19H01176, 20H04550, 21K16655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Gu .

Editor information

Editors and Affiliations

Ethics declarations

Code Availability

The code is available from the authors ({gu.yi.gu4,otake, yoshi}@is.naist.jp) upon reasonable request for research activity.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (pdf 1555 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, Y. et al. (2023). MSKdeX: Musculoskeletal (MSK) Decomposition from an X-Ray Image for Fine-Grained Estimation of Lean Muscle Mass and Muscle Volume. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics