Abstract
Reconstructing deformable tissues from endoscopic stereo videos in robotic surgery is crucial for various clinical applications. However, existing methods relying only on implicit representations are computationally expensive and require dozens of hours, which limits further practical applications. To address this challenge, we introduce LerPlane, a novel method for fast and accurate reconstruction of surgical scenes under a single-viewpoint setting. LerPlane treats surgical procedures as 4D volumes and factorizes them into explicit 2D planes of static and dynamic fields, leading to a compact memory footprint and significantly accelerated optimization. The efficient factorization is accomplished by fusing features obtained through linear interpolation of each plane and enables using lightweight neural networks to model surgical scenes. Besides, LerPlane shares static fields, significantly reducing the workload of dynamic tissue modeling. We also propose a novel sample scheme to boost optimization and improve performance in regions with tool occlusion and large motions. Experiments on DaVinci robotic surgery videos demonstrate that LerPlane accelerates optimization by over 100\(\times \) while maintaining high quality across various non-rigid deformations, showing significant promise for future intraoperative surgery applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson, M., Åström, K., Fairchild, M.D.: FLIP: a difference evaluator for alternating images. Proc. ACM Comput. Graph. Interact. Tech. 3(2), 15-1 (2020)
Andersson, P., Nilsson, J., Shirley, P., Akenine-Möller, T.: Visualizing errors in rendered high dynamic range images. Eurographics (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133 (2022)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXII. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H.P., Willcocks, C.G.: MedNeRF: medical neural radiance fields for reconstructing 3D-aware CT-projections from a single x-ray. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3843–3848. IEEE (2022)
Fang, J., et al.: Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)
Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking neural radiance fields for real-time view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5875–5884 (2021)
Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18, 165–174 (1984)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, T., et al.: Neural 3d video synthesis from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5521–5531 (2022)
Li, Z., et al.: Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6197–6206 (2021)
Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural. Inf. Process. Syst. 33, 15651–15663 (2020)
Long, Y., et al.: E-DSSR: efficient dynamic surgical scene reconstruction with transformer-based stereoscopic depth perception. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part IV. LNCS, vol. 12904, pp. 415–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_40
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Müller, T., McWilliams, B., Rousselle, F., Gross, M., Novák, J.: Neural importance sampling. ACM Trans. Graph. (ToG) 38(5), 1–19 (2019)
Park, K., et al.: NeRFies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)
Park, K., et al.: HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)
Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part III. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)
Schwarz, K., Sauer, A., Niemeyer, M., Liao, Y., Geiger, A.: VoxGRAF: fast 3D-aware image synthesis with sparse voxel grids. arXiv preprint arXiv:2206.07695 (2022)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)
Wang, Y., Long, Y., Fan, S.H., Dou, Q.: Neural rendering for stereo 3D reconstruction of deformable tissues in robotic surgery. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VII. LNCS, vol. 13437, pp. 431–441. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_41
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)
Data Use Declaration and Acknowledgment
This work was supported in part by the National Key R&D Program of China 2022YFF1202600, in part by the National Natural Science Foundation of China under Grant 62176159, in part by the Natural Science Foundation of Shanghai 21ZR1432200, and in part by the Shanghai Municipal Science and Technology Major Project 2021SHZDZX0102. This paper uses the EndoNeRF dataset, which is supported by Multi-Scale Medical Robotics Centre InnoHK, CUHK Shun Hing Institute of Advanced Engineering, and Shenzhen-HK Collaborative Development Zone.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, C., Wang, K., Wang, Y., Yang, X., Shen, W. (2023). Neural LerPlane Representations for Fast 4D Reconstruction of Deformable Tissues. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-43996-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43995-7
Online ISBN: 978-3-031-43996-4
eBook Packages: Computer ScienceComputer Science (R0)