Nothing Special   »   [go: up one dir, main page]

Skip to main content

EchoGLAD: Hierarchical Graph Neural Networks for Left Ventricle Landmark Detection on Echocardiograms

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The functional assessment of the left ventricle chamber of the heart requires detecting four landmark locations and measuring the internal dimension of the left ventricle and the approximate mass of the surrounding muscle. The key challenge of automating this task with machine learning is the sparsity of clinical labels, i.e., only a few landmark pixels in a high-dimensional image are annotated, leading many prior works to heavily rely on isotropic label smoothing. However, such a label smoothing strategy ignores the anatomical information of the image and induces some bias. To address this challenge, we introduce an echocardiogram-based, hierarchical graph neural network (GNN) for left ventricle landmark detection (EchoGLAD). Our main contributions are: 1) a hierarchical graph representation learning framework for multi-resolution landmark detection via GNNs; 2) induced hierarchical supervision at different levels of granularity using a multi-level loss. We evaluate our model on a public and a private dataset under the in-distribution (ID) and out-of-distribution (OOD) settings. For the ID setting, we achieve the state-of-the-art mean absolute errors (MAEs) of 1.46 mm and 1.86 mm on the two datasets. Our model also shows better OOD generalization than prior works with a testing MAE of 4.3 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  2. Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 873–881. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_97

    Chapter  Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  4. Duffy, G., et al.: High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 7(4), 386–395 (2022)

    Article  Google Scholar 

  5. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  6. Gilbert, A., Holden, M., Eikvil, L., Aase, S.A., Samset, E., McLeod, K.: Automated left ventricle dimension measurement in 2D cardiac ultrasound via an anatomically meaningful CNN approach. In: Wang, Q., et al. (eds.) PIPPI/SUSI -2019. LNCS, vol. 11798, pp. 29–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_4

    Chapter  Google Scholar 

  7. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1263–1272. JMLR.org (2017)

    Google Scholar 

  8. Goan, E., Fookes, C.: Bayesian neural networks: an introduction and survey. In: Mengersen, K.L., Pudlo, P., Robert, C.P. (eds.) Case Studies in Applied Bayesian Data Science. LNM, vol. 2259, pp. 45–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42553-1_3

    Chapter  MATH  Google Scholar 

  9. Goco, J.A.D., Jafari, M.H., Luong, C., Tsang, T., Abolmaesumi, P.: An efficient deep landmark detection network for PLAX EF estimation using sparse annotations. In: Linte, C.A., Siewerdsen, J.H. (eds.) Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 12034, p. 120340N. International Society for Optics and Photonics, SPIE (2022)

    Google Scholar 

  10. Gradman, A.H., Alfayoumi, F.: From left ventricular hypertrophy to congestive heart failure: Management of hypertensive heart disease. Progress Cardiovas. Dis. 48(5), 326–341 (2006). hypertension 2006 Update

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Howard, J.P., et al.: Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ. Cardiovasc. Imaging 14, e011951–e011951 (2021)

    Article  Google Scholar 

  13. Jafari, M.H., et al.: U-land: uncertainty-driven video landmark detection. IEEE Trans. Med. Imaging 41(4), 793–804 (2022)

    Article  Google Scholar 

  14. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  16. Li, W., et al.: Structured landmark detection via topology-adapting deep graph learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 266–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_16

    Chapter  Google Scholar 

  17. Lin, C., et al.: Structure-coherent deep feature learning for robust face alignment. IEEE Trans. Image Process. 30, 5313–5326 (2021)

    Article  Google Scholar 

  18. Lin, J., et al.: Reciprocal landmark detection and tracking with extremely few annotations. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15165–15174. IEEE Computer Society (2021)

    Google Scholar 

  19. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision, pp. 9992–10002. IEEE Computer Society (oct 2021)

    Google Scholar 

  20. McCouat, J., Voiculescu, I.: Contour-hugging heatmaps for landmark detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20565–20573 (2022)

    Google Scholar 

  21. McFarland, T.M., Alam, M., Goldstein, S., Pickard, S.D., Stein, P.D.: Echocardiographic diagnosis of left ventricular hypertrophy. Circulation 50 (1978)

    Google Scholar 

  22. Mokhtari, M., Tsang, T., Abolmaesumi, P., Liao, R.: Echognn: explainable ejection fraction estimation with graph neural networks. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI. LNCS, vol. 13434, pp. 360–369. Springer, Cham (2022)

    Google Scholar 

  23. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)

    Article  Google Scholar 

  26. Sofka, M., Milletari, F., Jia, J., Rothberg, A.: Fully convolutional regression network for accurate detection of measurement points. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 258–266. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_30

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Purang Abolmaesumi or Renjie Liao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1977 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mokhtari, M. et al. (2023). EchoGLAD: Hierarchical Graph Neural Networks for Left Ventricle Landmark Detection on Echocardiograms. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics