Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions. Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders. This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training. However, detecting anomalies in ECG can be challenging due to significant inter-individual differences and anomalies present in both global rhythm and local morphology. To address this challenge, this paper introduces a novel multi-scale cross-restoration framework for ECG anomaly detection and localization that considers both local and global ECG characteristics. The proposed framework employs a two-branch autoencoder to facilitate multi-scale feature learning through a masking and restoration process, with one branch focusing on global features from the entire ECG and the other on local features from heartbeat-level details, mimicking the diagnostic process of cardiologists. Anomalies are identified by their high restoration errors. To evaluate the performance on a large number of individuals, this paper introduces a new challenging benchmark with signal point-level ground truths annotated by experienced cardiologists. The proposed method demonstrates state-of-the-art performance on this benchmark and two other well-known ECG datasets. The benchmark dataset and source code are available at: https://github.com/MediaBrain-SJTU/ECGAD

A. Jiang and C. Huang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: Usad: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)

    Google Scholar 

  2. Chalapathy, R., Menon, A.K., Chawla, S.: Robust, deep and inductive anomaly detection. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_3

    Chapter  Google Scholar 

  3. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  4. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)

    Google Scholar 

  5. van Gent, P., Farah, H., van Nes, N., van Arem, B.: Analysing noisy driver physiology real-time using off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project. J. Open Res. Softw. 7(1) (2019)

    Google Scholar 

  6. Keogh, E., Lin, J., Fu, A.: Hot sax: finding the most unusual time series subsequence: Algorithms and applications. In: Proceedings of the IEEE International Conference on Data Mining, pp. 440–449. Citeseer (2004)

    Google Scholar 

  7. Khan, M.G.: Step-by-step method for accurate electrocardiogram interpretation. In: Rapid ECG Interpretation, pp. 25–80. Humana Press, Totowa, NJ (2008)

    Google Scholar 

  8. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-d convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)

    Article  Google Scholar 

  9. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  10. Li, H., Boulanger, P.: A survey of heart anomaly detection using ambulatory electrocardiogram (ECG). Sensors 20(5), 1461 (2020)

    Article  Google Scholar 

  11. Liu, S., et al.: Time series anomaly detection with adversarial reconstruction networks. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  12. Mao, Y., Xue, F.-F., Wang, R., Zhang, J., Zheng, W.-S., Liu, H.: Abnormality detection in chest X-Ray images using uncertainty prediction autoencoders. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 529–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_51

    Chapter  Google Scholar 

  13. Moody, G.B., Mark, R.G.: The impact of the mit-bih arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  14. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  15. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-anogan: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  16. Shaker, A.M., Tantawi, M., Shedeed, H.A., Tolba, M.F.: Generalization of convolutional neural networks for ECG classification using generative adversarial networks. IEEE Access 8, 35592–35605 (2020)

    Article  Google Scholar 

  17. Shen, L., Yu, Z., Ma, Q., Kwok, J.T.: Time series anomaly detection with multiresolution ensemble decoding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 9567–9575 (2021)

    Google Scholar 

  18. Tuli, S., Casale, G., Jennings, N.R.: Tranad: deep transformer networks for anomaly detection in multivariate time series data. In: International Conference on Very Large Databases 15(6), pp. 1201–1214 (2022)

    Google Scholar 

  19. Van Gent, P., Farah, H., Van Nes, N., Van Arem, B.: Heartpy: a novel heart rate algorithm for the analysis of noisy signals. Transport. Res. F: Traffic Psychol. Behav. 66, 368–378 (2019)

    Article  Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  21. Venkatesan, C., Karthigaikumar, P., Paul, A., Satheeskumaran, S., Kumar, R.: ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access 6, 9767–9773 (2018)

    Article  Google Scholar 

  22. Wagner, P., et al.: Ptb-xl, a large publicly available electrocardiography dataset. Sci. Data 7(1), 1–15 (2020)

    Article  Google Scholar 

  23. Wang, J., et al.: Automated ECG classification using a non-local convolutional block attention module. Comput. Methods Programs Biomed. 203, 106006 (2021)

    Article  Google Scholar 

  24. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

  25. Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: time series anomaly detection with association discrepancy. In: International Conference on Learning Representations (2022)

    Google Scholar 

  26. Ye, F., Huang, C., Cao, J., Li, M., Zhang, Y., Lu, C.: Attribute restoration framework for anomaly detection. IEEE Trans. Multimedia 24, 116–127 (2022)

    Article  Google Scholar 

  27. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1409–1416 (2019)

    Google Scholar 

  28. Zhang, Y., Chen, Y., Wang, J., Pan, Z.: Unsupervised deep anomaly detection for multi-sensor time-series signals. IEEE Trans. Knowl. Data Eng. 35(2), 2118–2132 (2021)

    Google Scholar 

  29. Zheng, Y., Liu, Z., Mo, R., Chen, Z., Zheng, W.s., Wang, R.: Task-oriented self-supervised learning for anomaly detection in electroencephalography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 193–203. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_19

  30. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key R &D Program of China (No. 2022ZD0160702), STCSM (No. 22511106101, No. 18DZ2270700, No. 21DZ1100100), 111 plan (No. BP0719010), the Youth Science Fund of National Natural Science Foundation of China (No. 7210040772) and National Facility for Translational Medicine (Shanghai) (No. TMSK-2021-501), and State Key Laboratory of UHD Video and Audio Production and Presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1993 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, A. et al. (2023). Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly Detection. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics