Abstract
Domain shift is a big challenge when deploying deep learning models in real-world applications due to various data distributions. The recent advances of domain adaptation mainly come from explicitly learning domain invariant features (e.g., by adversarial learning, metric learning and self-training). While they cannot be easily extended to multi-domains due to the diverse domain knowledge. In this paper, we present a novel multi-target domain adaptation (MTDA) algorithm, i.e., prompt-DA, through implicit feature adaptation for medical image segmentation. In particular, we build a feature transfer module by simply obtaining the domain-specific prompts and utilizing them to generate the domain-aware image features via a specially designed simple feature fusion module. Moreover, the proposed prompt-DA is compatible with the previous DA methods (e.g., adversarial learning based) and the performance can be continuously improved. The proposed method is evaluated on two challenging domain-shift datasets, i.e., the Iseg2019 (domain shift in infant MRI of different ages), and the BraTS2018 dataset (domain shift between high-grade and low-grade gliomas). Experimental results indicate our proposed method achieves state-of-the-art performance in both cases, and also demonstrates the effectiveness of the proposed prompt-DA. The experiments with adversarial learning DA show our proposed prompt-DA can go well with other DA methods. Our code is available at https://github.com/MurasakiLin/prompt-DA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Zhou, S., Nie, D., Adeli, E., Yin, J., Lian, J., Shen, D.: High-resolution encoder-decoder networks for low-contrast medical image segmentation. IEEE Trans. Image Process. 29, 461–475 (2019)
Ouyang, C., Kamnitsas, K., Biffi, C., Duan, J., Rueckert, D.: Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 669–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_74
Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: MI\(^2\)GAN: generative adversarial network for medical image domain adaptation using mutual information constraint. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 516–525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_50
Dou, Q., et al.: Pnp-adanet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99 065–99 076 (2019)
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.-A.: Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 865–872 (2019)
Cui, H., Yuwen, C., Jiang, L., Xia, Y., Zhang, Y.: Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation. Comput. Biol. Med. 136, 104726 (2021)
Kumar, A., Ma, T., Liang, P.: Understanding self-training for gradual domain adaptation. In: International Conference on Machine Learning, pp. 5468–5479. PMLR (2020)
Sheikh, R., Schultz, T.: Unsupervised domain adaptation for medical image segmentation via self-training of early features. In: International Conference on Medical Imaging with Deep Learning, pp. 1096–1107. PMLR (2022)
Xie, Q., et al.: Unsupervised domain adaptation for medical image segmentation by disentanglement learning and self-training. IEEE Trans. Med. Imaging (2022)
Yang, C., Guo, X., Chen, Z., Yuan, Y.: Source free domain adaptation for medical image segmentation with Fourier style mining. Med. Image Anal. 79, 102457 (2022)
Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., Tang, J.: P-tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint arXiv:2110.07602 (2021)
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)
Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. Lecture Notes in Computer Science, vol. 13693, pp. 709–727. Springer, Cham (2022)
Zheng, Z., Yue, X., Wang, K., You, Y.: Prompt vision transformer for domain generalization. arXiv preprint arXiv:2208.08914 (2022)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)
Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28
Sun, Y., et al.: Multi-site infant brain segmentation algorithms: the ISEG-2019 challenge. IEEE Trans. Med. Imaging 40(5), 1363–1376 (2021)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)
Zeng, G., et al.: Semantic consistent unsupervised domain adaptation for cross-modality medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 201–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_19
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 62001222), the China Postdoctoral Science Foundation funded project (No. 2021TQ0150 and No. 2021M701699).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lin, Y., Nie, D., Liu, Y., Yang, M., Zhang, D., Wen, X. (2023). Multi-Target Domain Adaptation with Prompt Learning for Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_68
Download citation
DOI: https://doi.org/10.1007/978-3-031-43907-0_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43906-3
Online ISBN: 978-3-031-43907-0
eBook Packages: Computer ScienceComputer Science (R0)