Abstract
Fully-supervised polyp segmentation has accomplished significant triumphs over the years in advancing the early diagnosis of colorectal cancer. However, label-efficient solutions from weak supervision like scribbles are rarely explored yet primarily meaningful and demanding in medical practice due to the expensiveness and scarcity of densely-annotated polyp data. Besides, various deployment issues, including data shifts and corruption, put forward further requests for model generalization and robustness. To address these concerns, we design a framework of Spatial-Spectral Dual-branch Mutual Teaching and Entropy-guided Pseudo Label Ensemble Learning (S\(^2\)ME). Concretely, for the first time in weakly-supervised medical image segmentation, we promote the dual-branch co-teaching framework by leveraging the intrinsic complementarity of features extracted from the spatial and spectral domains and encouraging cross-space consistency through collaborative optimization. Furthermore, to produce reliable mixed pseudo labels, which enhance the effectiveness of ensemble learning, we introduce a novel adaptive pixel-wise fusion technique based on the entropy guidance from the spatial and spectral branches. Our strategy efficiently mitigates the deleterious effects of uncertainty and noise present in pseudo labels and surpasses previous alternatives in terms of efficacy. Ultimately, we formulate a holistic optimization objective to learn from the hybrid supervision of scribbles and pseudo labels. Extensive experiments and evaluation on four public datasets demonstrate the superiority of our method regarding in-distribution accuracy, out-of-distribution generalization, and robustness, highlighting its promising clinical significance. Our code is available at https://github.com/lofrienger/S2ME .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For convenience, we omit the input x and model parameters \(\theta \).
- 2.
Some exemplary polyp frames are presented in the supplementary materials.
- 3.
- 4.
Complete results of all four metrics are present in the supplementary materials.
References
Ali, S., et al.: a multi-centre polyp detection and segmentation dataset for generalisability assessment. Sci. Data 10(1), 75 (2023)
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)
Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)
Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. Adv. Neural. Inf. Process. Syst. 33, 4479–4488 (2020)
Cinbis, R.G., Verbeek, J., Schmid, C.: Weakly supervised object localization with multi-fold multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 189–203 (2016)
Farshad, A., Yeganeh, Y., Gehlbach, P., Navab, N.: Y-net: a spatiospectral dual-encoder network for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Lecture Notes in Computer Science, vol. 13432, pp. 582–592. Springer, Cham (2022)
Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, vol. 17 (2004)
He, X., Fang, L., Tan, M., Chen, X.: Intra-and inter-slice contrastive learning for point supervised oct fluid segmentation. IEEE Trans. Image Process. 31, 1870–1881 (2022)
Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37
Ji, G.P., et al.: Video polyp segmentation: a deep learning perspective. Mach. Intell. Res. 1–19 (2022)
Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2
Li, Y., Xue, Y., Li, L., Zhang, X., Qian, X.: Domain adaptive box-supervised instance segmentation network for mitosis detection. IEEE Trans. Med. Imaging 41(9), 2469–2485 (2022)
Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)
Liu, X., et al.: Weakly supervised segmentation of covid19 infection with scribble annotation on CT images. Pattern Recogn. 122, 108341 (2022)
Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 528–538. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_50
Misawa, M., et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest. Endosc. 93(4), 960–967 (2021)
Obukhov, A., Georgoulis, S., Dai, D., Van Gool, L.: Gated CRF loss for weakly supervised semantic image segmentation. arXiv preprint arXiv:1906.04651 (2019)
Paszke, A., et al.: Automatic differentiation in pyTorch. In: NIPS-W (2017)
Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image classification. Adv. Neural. Inf. Process. Syst. 34, 980–993 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015)
Valvano, G., Leo, A., Tsaftaris, S.A.: Learning to segment from scribbles using multi-scale adversarial attention gates. IEEE Trans. Med. Imaging 40(8), 1990–2001 (2021)
Wang, A., Islam, M., Xu, M., Ren, H.: Rethinking surgical instrument segmentation: a background image can be all you need. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 355–364. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_34
Wang, K.N., et al.: Ffcnet: Fourier transform-based frequency learning and complex convolutional network for colon disease classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 78–87. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_8
Wang, Y., et al.: Freematch: self-adaptive thresholding for semi-supervised learning. arXiv preprint arXiv:2205.07246 (2022)
Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28
Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1740–1749 (2020)
Xu, M., Islam, M., Lim, C.M., Ren, H.: Class-incremental domain adaptation with smoothing and calibration for surgical report generation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 269–278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_26
Xu, M., Islam, M., Lim, C.M., Ren, H.: Learning domain adaptation with model calibration for surgical report generation in robotic surgery. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 12350–12356. IEEE (2021)
Zhang, K., Zhuang, X.: Cyclemix: a holistic strategy for medical image segmentation from scribble supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11656–11665 (2022)
Zhang, K., Zhuang, X.: ShapePU: a new PU learning framework regularized by global consistency for scribble supervised cardiac segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 162–172. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_16
Acknowledgements
This work was supported by Hong Kong Research Grants Council (RGC) Collaborative Research Fund (CRF C4063-18G), the Shun Hing Institute of Advanced Engineering (SHIAE project BME-p1-21) at the Chinese University of Hong Kong (CUHK), General Research Fund (GRF 14203323), Shenzhen-Hong Kong-Macau Technology Research Programme (Type C) STIC Grant SGDX20210823103535014 (202108233000303), and (GRS) #3110167.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, A., Xu, M., Zhang, Y., Islam, M., Ren, H. (2023). S\(^2\)ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for Scribble-Supervised Polyp Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-43907-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43906-3
Online ISBN: 978-3-031-43907-0
eBook Packages: Computer ScienceComputer Science (R0)