Nothing Special   »   [go: up one dir, main page]

Skip to main content

S\(^2\)ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for Scribble-Supervised Polyp Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

Abstract

Fully-supervised polyp segmentation has accomplished significant triumphs over the years in advancing the early diagnosis of colorectal cancer. However, label-efficient solutions from weak supervision like scribbles are rarely explored yet primarily meaningful and demanding in medical practice due to the expensiveness and scarcity of densely-annotated polyp data. Besides, various deployment issues, including data shifts and corruption, put forward further requests for model generalization and robustness. To address these concerns, we design a framework of Spatial-Spectral Dual-branch Mutual Teaching and Entropy-guided Pseudo Label Ensemble Learning (S\(^2\)ME). Concretely, for the first time in weakly-supervised medical image segmentation, we promote the dual-branch co-teaching framework by leveraging the intrinsic complementarity of features extracted from the spatial and spectral domains and encouraging cross-space consistency through collaborative optimization. Furthermore, to produce reliable mixed pseudo labels, which enhance the effectiveness of ensemble learning, we introduce a novel adaptive pixel-wise fusion technique based on the entropy guidance from the spatial and spectral branches. Our strategy efficiently mitigates the deleterious effects of uncertainty and noise present in pseudo labels and surpasses previous alternatives in terms of efficacy. Ultimately, we formulate a holistic optimization objective to learn from the hybrid supervision of scribbles and pseudo labels. Extensive experiments and evaluation on four public datasets demonstrate the superiority of our method regarding in-distribution accuracy, out-of-distribution generalization, and robustness, highlighting its promising clinical significance. Our code is available at https://github.com/lofrienger/S2ME .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For convenience, we omit the input x and model parameters \(\theta \).

  2. 2.

    Some exemplary polyp frames are presented in the supplementary materials.

  3. 3.

    https://github.com/HiLab-git/WSL4MIS.

  4. 4.

    Complete results of all four metrics are present in the supplementary materials.

References

  1. Ali, S., et al.: a multi-centre polyp detection and segmentation dataset for generalisability assessment. Sci. Data 10(1), 75 (2023)

    Article  MathSciNet  Google Scholar 

  2. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  3. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  4. Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. Adv. Neural. Inf. Process. Syst. 33, 4479–4488 (2020)

    Google Scholar 

  5. Cinbis, R.G., Verbeek, J., Schmid, C.: Weakly supervised object localization with multi-fold multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 189–203 (2016)

    Article  Google Scholar 

  6. Farshad, A., Yeganeh, Y., Gehlbach, P., Navab, N.: Y-net: a spatiospectral dual-encoder network for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Lecture Notes in Computer Science, vol. 13432, pp. 582–592. Springer, Cham (2022)

    Chapter  Google Scholar 

  7. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, vol. 17 (2004)

    Google Scholar 

  8. He, X., Fang, L., Tan, M., Chen, X.: Intra-and inter-slice contrastive learning for point supervised oct fluid segmentation. IEEE Trans. Image Process. 31, 1870–1881 (2022)

    Article  Google Scholar 

  9. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  10. Ji, G.P., et al.: Video polyp segmentation: a deep learning perspective. Mach. Intell. Res. 1–19 (2022)

    Google Scholar 

  11. Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2

    Chapter  Google Scholar 

  12. Li, Y., Xue, Y., Li, L., Zhang, X., Qian, X.: Domain adaptive box-supervised instance segmentation network for mitosis detection. IEEE Trans. Med. Imaging 41(9), 2469–2485 (2022)

    Article  Google Scholar 

  13. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  14. Liu, X., et al.: Weakly supervised segmentation of covid19 infection with scribble annotation on CT images. Pattern Recogn. 122, 108341 (2022)

    Article  Google Scholar 

  15. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 528–538. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_50

    Chapter  Google Scholar 

  16. Misawa, M., et al.: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest. Endosc. 93(4), 960–967 (2021)

    Google Scholar 

  17. Obukhov, A., Georgoulis, S., Dai, D., Van Gool, L.: Gated CRF loss for weakly supervised semantic image segmentation. arXiv preprint arXiv:1906.04651 (2019)

  18. Paszke, A., et al.: Automatic differentiation in pyTorch. In: NIPS-W (2017)

    Google Scholar 

  19. Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image classification. Adv. Neural. Inf. Process. Syst. 34, 980–993 (2021)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015)

    Google Scholar 

  21. Valvano, G., Leo, A., Tsaftaris, S.A.: Learning to segment from scribbles using multi-scale adversarial attention gates. IEEE Trans. Med. Imaging 40(8), 1990–2001 (2021)

    Article  Google Scholar 

  22. Wang, A., Islam, M., Xu, M., Ren, H.: Rethinking surgical instrument segmentation: a background image can be all you need. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 355–364. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_34

    Chapter  Google Scholar 

  23. Wang, K.N., et al.: Ffcnet: Fourier transform-based frequency learning and complex convolutional network for colon disease classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 78–87. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_8

    Chapter  Google Scholar 

  24. Wang, Y., et al.: Freematch: self-adaptive thresholding for semi-supervised learning. arXiv preprint arXiv:2205.07246 (2022)

  25. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  26. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1740–1749 (2020)

    Google Scholar 

  27. Xu, M., Islam, M., Lim, C.M., Ren, H.: Class-incremental domain adaptation with smoothing and calibration for surgical report generation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 269–278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_26

    Chapter  Google Scholar 

  28. Xu, M., Islam, M., Lim, C.M., Ren, H.: Learning domain adaptation with model calibration for surgical report generation in robotic surgery. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 12350–12356. IEEE (2021)

    Google Scholar 

  29. Zhang, K., Zhuang, X.: Cyclemix: a holistic strategy for medical image segmentation from scribble supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11656–11665 (2022)

    Google Scholar 

  30. Zhang, K., Zhuang, X.: ShapePU: a new PU learning framework regularized by global consistency for scribble supervised cardiac segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 162–172. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_16

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by Hong Kong Research Grants Council (RGC) Collaborative Research Fund (CRF C4063-18G), the Shun Hing Institute of Advanced Engineering (SHIAE project BME-p1-21) at the Chinese University of Hong Kong (CUHK), General Research Fund (GRF 14203323), Shenzhen-Hong Kong-Macau Technology Research Programme (Type C) STIC Grant SGDX20210823103535014 (202108233000303), and (GRS) #3110167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 425 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A., Xu, M., Zhang, Y., Islam, M., Ren, H. (2023). S\(^2\)ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for Scribble-Supervised Polyp Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics