Abstract
The identification of congenital inner ear malformations is a challenging task even for experienced clinicians. In this study, we present the first automated method for classifying congenital inner ear malformations. We generate 3D meshes of the cochlear structure in 364 normative and 107 abnormal anatomies using a segmentation model trained exclusively with normative anatomies. Given the sparsity and natural unbalance of such datasets, we use an unsupervised method for learning a feature representation of the 3D meshes using DeepDiffusion. In this approach, we use the PointNet architecture for the network-based unsupervised feature learning and combine it with the diffusion distance on a feature manifold. This unsupervised approach captures the variability of the different cochlear shapes and generates clusters in the latent space which faithfully represent the variability observed in the data. We report a mean average precision of 0.77 over the seven main pathological subgroups diagnosed by an ENT (Ear, Nose, and Throat) surgeon specialized in congenital inner ear malformations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brotto, D., et al.: Genetics of inner ear malformations: a review. Audiol. Res. 11(4), 524–536 (2021). https://doi.org/10.3390/audiolres11040047
Chakravorti, S., et al.: Further evidence of the relationship between cochlear implant electrode positioning and hearing outcomes. Otol. Neurotol. 40(5), 617–624 (2019). https://doi.org/10.1097/MAO.0000000000002204
Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: Pointnet: Deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017). https://doi.org/10.1109/CVPR.2017.16
Chen, X., Wang, W., Jiang, Y., Qian, X.: A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer. Med. Image Anal. 85, 102753 (2023). https://doi.org/10.1016/j.media.2023.102753, https://www.sciencedirect.com/science/article/pii/S1361841523000142
Dhanasingh, A.E., et al.: A novel three-step process for the identification of inner ear malformation types. Laryngoscope Investigative Otolaryngology (2022). https://doi.org/10.1002/lio2.936, https://onlinelibrary.wiley.com/doi/10.1002/lio2.936
Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert space embedding. In: International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings, pp. 31- (2004). https://doi.org/10.1109/ISIT.2004.1365067
Furuya, T., Ohbuchi, R.: Deepdiffusion: unsupervised learning of retrieval-adapted representations via diffusion-based ranking on latent feature manifold. IEEE Access 10, 116287–116301 (2022). https://doi.org/10.1109/ACCESS.2022.3218909
Korver, A.M., et al.: Congenital hearing loss. Nature Rev. Disease Primers 3(1), 1–17 (2017)
López Diez, P., et al.: Deep reinforcement learning for detection of inner ear abnormal anatomy in computed tomography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 697–706. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_67
Margeta, J., et al.: A web-based automated image processing research platform for cochlear implantation-related studies. J. Clin. Med. 11(22) (2022). https://doi.org/10.3390/jcm11226640, https://www.mdpi.com/2077-0383/11/22/6640
McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. J. Open Source Softw. 3(29), 861 (2018). https://doi.org/10.21105/joss.00861
MONAI-Consortium: Monai: Medical open network for AI (2022). https://doi.org/10.5281/zenodo.7459814
Ohbuchi, R., Minamitani, T., Takei, T.: Shape-similarity search of 3D models by using enhanced shape functions. Int. J. Comput. Appl. Technol. 23(2–4), 70–85 (2005)
Onga, Y., Fujiyama, S., Arai, H., Chayama, Y., Iyatomi, H., Oishi, K.: Efficient feature embedding of 3d brain mri images for content-based image retrieval with deep metric learning. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3764–3769. IEEE (2019)
Pal, A., et al.: Deep metric learning for cervical image classification. IEEE Access 9, 53266–53275 (2021)
Paludetti, G., et al.: Infant hearing loss: from diagnosis to therapy official report of xxi conference of Italian society of pediatric otorhinolaryngology. Acta Otorhinolaryngol. Italica 32(6), 347 (2012)
Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Radutoiu, A.T., Patou, F., Margeta, J., Paulsen, R.R., López Diez, P.: Accurate localization of inner ear regions of interests using deep reinforcement learning. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) Machine Learning in Medical Imaging. pp. 416–424. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_43
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234–241. Springer International Publishing, Cham (2015)
Sundgaard, J.V., et al.: Deep metric learning for otitis media classification. Med. Image Anal. 71, 102034 (2021). https://doi.org/10.1016/j.media.2021.102034, https://www.sciencedirect.com/science/article/pii/S1361841521000803
Zhang, Y., Luo, L., Dou, Q., Heng, P.A.: Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification. Med. Image Anal. 86, 102772 (2023). https://doi.org/10.1016/j.media.2023.102772, https://www.sciencedirect.com/science/article/pii/S1361841523000336
Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text. In: Proceedings of the 7th Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research, vol. 182, pp. 2–25. PMLR (2022). https://proceedings.mlr.press/v182/zhang22a.html
Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.: Ranking on data manifolds. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems. vol. 16. MIT Press (2003). https://proceedings.neurips.cc/paper/2003/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
López Diez, P., Margeta, J., Diab, K., Patou, F., Paulsen, R.R. (2023). Unsupervised Classification of Congenital Inner Ear Malformations Using DeepDiffusion for Latent Space Representation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_63
Download citation
DOI: https://doi.org/10.1007/978-3-031-43904-9_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43903-2
Online ISBN: 978-3-031-43904-9
eBook Packages: Computer ScienceComputer Science (R0)