Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Classification of Congenital Inner Ear Malformations Using DeepDiffusion for Latent Space Representation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The identification of congenital inner ear malformations is a challenging task even for experienced clinicians. In this study, we present the first automated method for classifying congenital inner ear malformations. We generate 3D meshes of the cochlear structure in 364 normative and 107 abnormal anatomies using a segmentation model trained exclusively with normative anatomies. Given the sparsity and natural unbalance of such datasets, we use an unsupervised method for learning a feature representation of the 3D meshes using DeepDiffusion. In this approach, we use the PointNet architecture for the network-based unsupervised feature learning and combine it with the diffusion distance on a feature manifold. This unsupervised approach captures the variability of the different cochlear shapes and generates clusters in the latent space which faithfully represent the variability observed in the data. We report a mean average precision of 0.77 over the seven main pathological subgroups diagnosed by an ENT (Ear, Nose, and Throat) surgeon specialized in congenital inner ear malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brotto, D., et al.: Genetics of inner ear malformations: a review. Audiol. Res. 11(4), 524–536 (2021). https://doi.org/10.3390/audiolres11040047

  2. Chakravorti, S., et al.: Further evidence of the relationship between cochlear implant electrode positioning and hearing outcomes. Otol. Neurotol. 40(5), 617–624 (2019). https://doi.org/10.1097/MAO.0000000000002204

    Article  Google Scholar 

  3. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: Pointnet: Deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017). https://doi.org/10.1109/CVPR.2017.16

  4. Chen, X., Wang, W., Jiang, Y., Qian, X.: A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer. Med. Image Anal. 85, 102753 (2023). https://doi.org/10.1016/j.media.2023.102753, https://www.sciencedirect.com/science/article/pii/S1361841523000142

  5. Dhanasingh, A.E., et al.: A novel three-step process for the identification of inner ear malformation types. Laryngoscope Investigative Otolaryngology (2022). https://doi.org/10.1002/lio2.936, https://onlinelibrary.wiley.com/doi/10.1002/lio2.936

  6. Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert space embedding. In: International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings, pp. 31- (2004). https://doi.org/10.1109/ISIT.2004.1365067

  7. Furuya, T., Ohbuchi, R.: Deepdiffusion: unsupervised learning of retrieval-adapted representations via diffusion-based ranking on latent feature manifold. IEEE Access 10, 116287–116301 (2022). https://doi.org/10.1109/ACCESS.2022.3218909

    Article  Google Scholar 

  8. Korver, A.M., et al.: Congenital hearing loss. Nature Rev. Disease Primers 3(1), 1–17 (2017)

    Google Scholar 

  9. López Diez, P., et al.: Deep reinforcement learning for detection of inner ear abnormal anatomy in computed tomography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 697–706. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_67

  10. Margeta, J., et al.: A web-based automated image processing research platform for cochlear implantation-related studies. J. Clin. Med. 11(22) (2022). https://doi.org/10.3390/jcm11226640, https://www.mdpi.com/2077-0383/11/22/6640

  11. McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. J. Open Source Softw. 3(29), 861 (2018). https://doi.org/10.21105/joss.00861

  12. MONAI-Consortium: Monai: Medical open network for AI (2022). https://doi.org/10.5281/zenodo.7459814

  13. Ohbuchi, R., Minamitani, T., Takei, T.: Shape-similarity search of 3D models by using enhanced shape functions. Int. J. Comput. Appl. Technol. 23(2–4), 70–85 (2005)

    Article  Google Scholar 

  14. Onga, Y., Fujiyama, S., Arai, H., Chayama, Y., Iyatomi, H., Oishi, K.: Efficient feature embedding of 3d brain mri images for content-based image retrieval with deep metric learning. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3764–3769. IEEE (2019)

    Google Scholar 

  15. Pal, A., et al.: Deep metric learning for cervical image classification. IEEE Access 9, 53266–53275 (2021)

    Article  Google Scholar 

  16. Paludetti, G., et al.: Infant hearing loss: from diagnosis to therapy official report of xxi conference of Italian society of pediatric otorhinolaryngology. Acta Otorhinolaryngol. Italica 32(6), 347 (2012)

    Google Scholar 

  17. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  18. Radutoiu, A.T., Patou, F., Margeta, J., Paulsen, R.R., López Diez, P.: Accurate localization of inner ear regions of interests using deep reinforcement learning. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) Machine Learning in Medical Imaging. pp. 416–424. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_43

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234–241. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  20. Sundgaard, J.V., et al.: Deep metric learning for otitis media classification. Med. Image Anal. 71, 102034 (2021). https://doi.org/10.1016/j.media.2021.102034, https://www.sciencedirect.com/science/article/pii/S1361841521000803

  21. Zhang, Y., Luo, L., Dou, Q., Heng, P.A.: Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification. Med. Image Anal. 86, 102772 (2023). https://doi.org/10.1016/j.media.2023.102772, https://www.sciencedirect.com/science/article/pii/S1361841523000336

  22. Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text. In: Proceedings of the 7th Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research, vol. 182, pp. 2–25. PMLR (2022). https://proceedings.mlr.press/v182/zhang22a.html

  23. Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.: Ranking on data manifolds. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems. vol. 16. MIT Press (2003). https://proceedings.neurips.cc/paper/2003/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula López Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López Diez, P., Margeta, J., Diab, K., Patou, F., Paulsen, R.R. (2023). Unsupervised Classification of Congenital Inner Ear Malformations Using DeepDiffusion for Latent Space Representation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics