Abstract
Accurately localizing and identifying vertebra from CT images is crucial for various clinical applications. However, most existing efforts are performed on 3D with cropping patch operation, suffering from the large computation costs and limited global information. In this paper, we propose a multi-view vertebra localization and identification from CT images, converting the 3D problem into a 2D localization and identification task on different views. Without the limitation of the 3D cropped patch, our method can learn the multi-view global information naturally. Moreover, to better capture the anatomical structure information from different view perspectives, a multi-view contrastive learning strategy is developed to pre-train the backbone. Additionally, we further propose a Sequence Loss to maintain the sequential structure embedded along the vertebrae. Evaluation results demonstrate that, with only two 2D networks, our method can localize and identify vertebrae in CT images accurately, and outperforms the state-of-the-art methods consistently. Our code is available at https://github.com/ShanghaiTech-IMPACT/Multi-View-Vertebra-Localization-and-Identification-from-CT-Images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Burns, J.E., Yao, J., Muñoz, H., Summers, R.M.: Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 278(1), 64–73 (2016)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Cheng, P., Yang, Y., Yu, H., He, Y.: Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net. Sci. Rep. 11(1), 1–13 (2021)
Cui, Z., et al.: VertNet: accurate vertebra localization and identification network from CT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 281–290. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_27
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Knez, D., Likar, B., Pernuš, F., Vrtovec, T.: Computer-assisted screw size and insertion trajectory planning for pedicle screw placement surgery. IEEE Trans. Med. Imaging 35(6), 1420–1430 (2016)
Kumar, R.: Robotic assistance and intervention in spine surgery. In: Li, S., Yao, J. (eds.) Spinal Imaging and Image Analysis. LNCVB, vol. 18, pp. 495–506. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12508-4_16
Lessmann, N., Van Ginneken, B., De Jong, P.A., Išgum, I.: Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med. Image Anal. 53, 142–155 (2019)
Masuzawa, N., Kitamura, Y., Nakamura, K., Iizuka, S., Simo-Serra, E.: Automatic segmentation, localization, and identification of vertebrae in 3D CT images using cascaded convolutional neural networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 681–690. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_66
Meng, D., Mohammed, E., Boyer, E., Pujades, S.: Vertebrae localization, segmentation and identification using a graph optimization and an anatomic consistency cycle. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) Machine Learning in Medical Imaging, pp. 307–317. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_32
Payer, C., Stern, D., Bischof, H., Urschler, M.: Coarse to fine vertebrae localization and segmentation with SpatialConfiguration-Net and U-Net. In: VISIGRAPP (5: VISAPP), pp. 124–133 (2020)
Qin, C., et al.: Vertebrae labeling via end-to-end integral regression localization and multi-label classification network. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2726–2736 (2021)
Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)
Sekuboyina, A., et al.: VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 73, 102166 (2021)
Sekuboyina, A., et al.: Btrfly net: vertebrae labelling with energy-based adversarial learning of local spine prior. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 649–657. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_74
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, H. et al. (2023). Multi-view Vertebra Localization and Identification from CT Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-43904-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43903-2
Online ISBN: 978-3-031-43904-9
eBook Packages: Computer ScienceComputer Science (R0)