Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-view Vertebra Localization and Identification from CT Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Accurately localizing and identifying vertebra from CT images is crucial for various clinical applications. However, most existing efforts are performed on 3D with cropping patch operation, suffering from the large computation costs and limited global information. In this paper, we propose a multi-view vertebra localization and identification from CT images, converting the 3D problem into a 2D localization and identification task on different views. Without the limitation of the 3D cropped patch, our method can learn the multi-view global information naturally. Moreover, to better capture the anatomical structure information from different view perspectives, a multi-view contrastive learning strategy is developed to pre-train the backbone. Additionally, we further propose a Sequence Loss to maintain the sequential structure embedded along the vertebrae. Evaluation results demonstrate that, with only two 2D networks, our method can localize and identify vertebrae in CT images accurately, and outperforms the state-of-the-art methods consistently. Our code is available at https://github.com/ShanghaiTech-IMPACT/Multi-View-Vertebra-Localization-and-Identification-from-CT-Images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burns, J.E., Yao, J., Muñoz, H., Summers, R.M.: Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 278(1), 64–73 (2016)

    Article  Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  4. Cheng, P., Yang, Y., Yu, H., He, Y.: Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  5. Cui, Z., et al.: VertNet: accurate vertebra localization and identification network from CT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 281–290. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_27

    Chapter  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  8. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  9. Knez, D., Likar, B., Pernuš, F., Vrtovec, T.: Computer-assisted screw size and insertion trajectory planning for pedicle screw placement surgery. IEEE Trans. Med. Imaging 35(6), 1420–1430 (2016)

    Article  Google Scholar 

  10. Kumar, R.: Robotic assistance and intervention in spine surgery. In: Li, S., Yao, J. (eds.) Spinal Imaging and Image Analysis. LNCVB, vol. 18, pp. 495–506. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12508-4_16

    Chapter  Google Scholar 

  11. Lessmann, N., Van Ginneken, B., De Jong, P.A., Išgum, I.: Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med. Image Anal. 53, 142–155 (2019)

    Article  Google Scholar 

  12. Masuzawa, N., Kitamura, Y., Nakamura, K., Iizuka, S., Simo-Serra, E.: Automatic segmentation, localization, and identification of vertebrae in 3D CT images using cascaded convolutional neural networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 681–690. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_66

    Chapter  Google Scholar 

  13. Meng, D., Mohammed, E., Boyer, E., Pujades, S.: Vertebrae localization, segmentation and identification using a graph optimization and an anatomic consistency cycle. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) Machine Learning in Medical Imaging, pp. 307–317. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_32

    Chapter  Google Scholar 

  14. Payer, C., Stern, D., Bischof, H., Urschler, M.: Coarse to fine vertebrae localization and segmentation with SpatialConfiguration-Net and U-Net. In: VISIGRAPP (5: VISAPP), pp. 124–133 (2020)

    Google Scholar 

  15. Qin, C., et al.: Vertebrae labeling via end-to-end integral regression localization and multi-label classification network. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2726–2736 (2021)

    Article  MathSciNet  Google Scholar 

  16. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Google Scholar 

  17. Sekuboyina, A., et al.: VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 73, 102166 (2021)

    Article  Google Scholar 

  18. Sekuboyina, A., et al.: Btrfly net: vertebrae labelling with energy-based adversarial learning of local spine prior. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 649–657. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_74

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Cui or Dinggang Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 625 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H. et al. (2023). Multi-view Vertebra Localization and Identification from CT Images. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics