Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Exclusive Adaptive Sparse Feature Selection for Biomarker Discovery and Early Diagnosis of Neuropsychiatric Systemic Lupus Erythematosus

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 4481 Accesses

Abstract

The symptoms of neuropsychiatric systemic lupus erythematosus (NPSLE) are subtle and elusive at the early stages. \(^1\)H-MRS (proton magnetic resonance spectrum) imaging technology can detect more detailed early appearances of NPSLE compared with conventional ones. However, the noises in \(^1\)H-MRS data often bring bias in the diagnostic process. Moreover, the features of specific brain regions are positively correlated with a certain category but may be redundant for other categories. To overcome these issues, we propose a robust exclusive adaptive sparse feature selection (REASFS) algorithm for early diagnosis and biomarker discovery of NPSLE. Specifically, we employ generalized correntropic loss to address non-Gaussian noise and outliers. Then, we develop a generalized correntropy-induced exclusive \(\ell _{2,1}\) regularization to adaptively accommodate various sparsity levels and preserve informative features. We conduct sufficient experiments on a benchmark NPSLE dataset, and the experimental results demonstrate the superiority of our proposed method compared with state-of-the-art ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, B., Xing, L., Zhao, H., Zheng, N., Prı, J.C., et al.: Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  Google Scholar 

  2. He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1561–1576 (2010)

    Google Scholar 

  3. Jeltsch-David, H., Muller, S.: Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat. Rev. Neurol. 10(10), 579–596 (2014)

    Article  Google Scholar 

  4. Kingsmore, K.M., Lipsky, P.E.: Recent advances in the use of machine learning and artificial intelligence to improve diagnosis, predict flares, and enrich clinical trials in lupus. Curr. Opin. Rheumatol. 34(6), 374–381 (2022)

    Article  Google Scholar 

  5. Kinney, J.B., Atwal, G.S.: Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. 111(9), 3354–3359 (2014)

    Article  MathSciNet  Google Scholar 

  6. Liu, J., Ji, S., Ye, J.: Multi-task feature learning via efficient l2, 1-norm minimization. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 339–348 (2009)

    Google Scholar 

  7. Luo, X., et al.: Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. Eur. Radiol. 32(8), 5700–5710 (2022)

    Article  MathSciNet  Google Scholar 

  8. Mackay, M., Tang, C.C., Vo, A.: Advanced neuroimaging in neuropsychiatric systemic lupus erythematosus. Curr. Opin. Neurol. 33(3), 353 (2020)

    Article  Google Scholar 

  9. Ming, D., Ding, C.: Robust flexible feature selection via exclusive l21 regularization. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3158–3164 (2019)

    Google Scholar 

  10. Ming, D., Ding, C., Nie, F.: A probabilistic derivation of LASSO and L12-norm feature selections. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4586–4593 (2019)

    Google Scholar 

  11. Monahan, R.C., et al.: Mortality in patients with systemic lupus erythematosus and neuropsychiatric involvement: a retrospective analysis from a tertiary referral center in the Netherlands. Lupus 29(14), 1892–1901 (2020)

    Google Scholar 

  12. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint \(\ell \)2, 1-norms minimization. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  13. Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27(3), 937–966 (2005)

    Article  MathSciNet  Google Scholar 

  14. Quan, T., Yuan, Y., Song, Y., Zhou, T., Qin, J.: Fuzzy structural broad learning for breast cancer classification. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE (2022)

    Google Scholar 

  15. Ruiz-Rodado, V., Brender, J.R., Cherukuri, M.K., Gilbert, M.R., Larion, M.: Magnetic resonance spectroscopy for the study of CNS malignancies. Prog. Nucl. Magn. Reson. Spectrosc. 122, 23–41 (2021)

    Article  Google Scholar 

  16. Simos, N.J., et al.: Quantitative identification of functional connectivity disturbances in neuropsychiatric lupus based on resting-state fMRI: a robust machine learning approach. Brain Sci. 10(11), 777 (2020)

    Article  Google Scholar 

  17. Tamires Lapa, A., et al.: Reduction of cerebral and corpus callosum volumes in childhood-onset systemic lupus erythematosus: a volumetric magnetic resonance imaging analysis. Arthritis Rheumatol. 68(9), 2193–2199 (2016)

    Article  Google Scholar 

  18. Tannous, J., et al.: Altered neurochemistry in the anterior white matter of bipolar children and adolescents: a multivoxel 1h MRS study. Mol. Psychiatry 26(8), 4117–4126 (2021)

    Article  Google Scholar 

  19. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  20. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  Google Scholar 

  21. Wang, Z., Nie, F., Tian, L., Wang, R., Li, X.: Discriminative feature selection via a structured sparse subspace learning module. In: IJCAI, pp. 3009–3015 (2020)

    Google Scholar 

  22. Yuan, Y., Quan, T., Song, Y., Guan, J., Zhou, T., Wu, R.: Noise-immune extreme ensemble learning for early diagnosis of neuropsychiatric systemic lupus erythematosus. IEEE J. Biomed. Health Inform. 26(7), 3495–3506 (2022)

    Article  Google Scholar 

  23. Zhang, S., Dang, X., Nguyen, D., Wilkins, D., Chen, Y.: Estimating feature-label dependence using Gini distance statistics. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1947–1963 (2019)

    Article  Google Scholar 

  24. Zhuo, Z., et al.: Different patterns of cerebral perfusion in SLE patients with and without neuropsychiatric manifestations. Hum. Brain Mapp. 41(3), 755–766 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Innovation and Technology Fund - Guangdong-Hong Kong Technology Cooperation Funding Scheme (No. GHP/051/20GD), the Project of Strategic Importance in The Hong Kong Polytechnic University (No. 1-ZE2Q), the 2022 Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515011590), the National Natural Science Foundation of China (No. 61902232), and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG05D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quan, T., Yuan, Y., Luo, Y., Zhou, T., Qin, J. (2023). Robust Exclusive Adaptive Sparse Feature Selection for Biomarker Discovery and Early Diagnosis of Neuropsychiatric Systemic Lupus Erythematosus. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics