Abstract
The symptoms of neuropsychiatric systemic lupus erythematosus (NPSLE) are subtle and elusive at the early stages. \(^1\)H-MRS (proton magnetic resonance spectrum) imaging technology can detect more detailed early appearances of NPSLE compared with conventional ones. However, the noises in \(^1\)H-MRS data often bring bias in the diagnostic process. Moreover, the features of specific brain regions are positively correlated with a certain category but may be redundant for other categories. To overcome these issues, we propose a robust exclusive adaptive sparse feature selection (REASFS) algorithm for early diagnosis and biomarker discovery of NPSLE. Specifically, we employ generalized correntropic loss to address non-Gaussian noise and outliers. Then, we develop a generalized correntropy-induced exclusive \(\ell _{2,1}\) regularization to adaptively accommodate various sparsity levels and preserve informative features. We conduct sufficient experiments on a benchmark NPSLE dataset, and the experimental results demonstrate the superiority of our proposed method compared with state-of-the-art ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, B., Xing, L., Zhao, H., Zheng, N., Prı, J.C., et al.: Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)
He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1561–1576 (2010)
Jeltsch-David, H., Muller, S.: Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat. Rev. Neurol. 10(10), 579–596 (2014)
Kingsmore, K.M., Lipsky, P.E.: Recent advances in the use of machine learning and artificial intelligence to improve diagnosis, predict flares, and enrich clinical trials in lupus. Curr. Opin. Rheumatol. 34(6), 374–381 (2022)
Kinney, J.B., Atwal, G.S.: Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. 111(9), 3354–3359 (2014)
Liu, J., Ji, S., Ye, J.: Multi-task feature learning via efficient l2, 1-norm minimization. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 339–348 (2009)
Luo, X., et al.: Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. Eur. Radiol. 32(8), 5700–5710 (2022)
Mackay, M., Tang, C.C., Vo, A.: Advanced neuroimaging in neuropsychiatric systemic lupus erythematosus. Curr. Opin. Neurol. 33(3), 353 (2020)
Ming, D., Ding, C.: Robust flexible feature selection via exclusive l21 regularization. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3158–3164 (2019)
Ming, D., Ding, C., Nie, F.: A probabilistic derivation of LASSO and L12-norm feature selections. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4586–4593 (2019)
Monahan, R.C., et al.: Mortality in patients with systemic lupus erythematosus and neuropsychiatric involvement: a retrospective analysis from a tertiary referral center in the Netherlands. Lupus 29(14), 1892–1901 (2020)
Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint \(\ell \)2, 1-norms minimization. In: Advances in Neural Information Processing Systems, vol. 23 (2010)
Nikolova, M., Ng, M.K.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27(3), 937–966 (2005)
Quan, T., Yuan, Y., Song, Y., Zhou, T., Qin, J.: Fuzzy structural broad learning for breast cancer classification. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE (2022)
Ruiz-Rodado, V., Brender, J.R., Cherukuri, M.K., Gilbert, M.R., Larion, M.: Magnetic resonance spectroscopy for the study of CNS malignancies. Prog. Nucl. Magn. Reson. Spectrosc. 122, 23–41 (2021)
Simos, N.J., et al.: Quantitative identification of functional connectivity disturbances in neuropsychiatric lupus based on resting-state fMRI: a robust machine learning approach. Brain Sci. 10(11), 777 (2020)
Tamires Lapa, A., et al.: Reduction of cerebral and corpus callosum volumes in childhood-onset systemic lupus erythematosus: a volumetric magnetic resonance imaging analysis. Arthritis Rheumatol. 68(9), 2193–2199 (2016)
Tannous, J., et al.: Altered neurochemistry in the anterior white matter of bipolar children and adolescents: a multivoxel 1h MRS study. Mol. Psychiatry 26(8), 4117–4126 (2021)
Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)
Wang, Z., Nie, F., Tian, L., Wang, R., Li, X.: Discriminative feature selection via a structured sparse subspace learning module. In: IJCAI, pp. 3009–3015 (2020)
Yuan, Y., Quan, T., Song, Y., Guan, J., Zhou, T., Wu, R.: Noise-immune extreme ensemble learning for early diagnosis of neuropsychiatric systemic lupus erythematosus. IEEE J. Biomed. Health Inform. 26(7), 3495–3506 (2022)
Zhang, S., Dang, X., Nguyen, D., Wilkins, D., Chen, Y.: Estimating feature-label dependence using Gini distance statistics. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1947–1963 (2019)
Zhuo, Z., et al.: Different patterns of cerebral perfusion in SLE patients with and without neuropsychiatric manifestations. Hum. Brain Mapp. 41(3), 755–766 (2020)
Acknowledgements
This work was supported by a grant of the Innovation and Technology Fund - Guangdong-Hong Kong Technology Cooperation Funding Scheme (No. GHP/051/20GD), the Project of Strategic Importance in The Hong Kong Polytechnic University (No. 1-ZE2Q), the 2022 Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515011590), the National Natural Science Foundation of China (No. 61902232), and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG05D).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Quan, T., Yuan, Y., Luo, Y., Zhou, T., Qin, J. (2023). Robust Exclusive Adaptive Sparse Feature Selection for Biomarker Discovery and Early Diagnosis of Neuropsychiatric Systemic Lupus Erythematosus. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-43904-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43903-2
Online ISBN: 978-3-031-43904-9
eBook Packages: Computer ScienceComputer Science (R0)