Nothing Special   »   [go: up one dir, main page]

Skip to main content

CorSegRec: A Topology-Preserving Scheme for Extracting Fully-Connected Coronary Arteries from CT Angiography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Accurate extraction of coronary arteries from coronary computed tomography angiography (CCTA) is a prerequisite for the computer-aided diagnosis of coronary artery disease (CAD). Deep learning-based methods can achieve automatic segmentation of vasculatures, but few of them focus on the connectivity and completeness of the coronary tree. In this paper, we propose CorSegRec, a topology-preserving scheme for extracting fully-connected coronary artery, which integrates image segmentation, centerline reconnection, and geometry reconstruction. First, we employ a new centerline enhanced loss in the segmentation process. Second, for the broken vessel segments, we propose a regularized walk algorithm, by integrating distance, probabilities predicted by centerline classifier, and cosine similarity to reconnect centerlines. Third, we apply level-set segmentation and implicit modeling techniques to reconstruct the geometric model of the missing vessels. Experiment results on two datasets demonstrate that the proposed method outperforms other methods with better volumetric scores and higher vascular connectivity. Code will be available at https://github.com/YH-Qiu/CorSegRec.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://asoca.grand-challenge.org/.

References

  1. Banh, D., Kyprianou, I.S., Paquerault, S., Myers, K.J.: Morphology-based three-dimensional segmentation of coronary artery tree from CTA scans. In: Medical Imaging (2007)

    Google Scholar 

  2. Bock, S., Giger, M.L., Karssemeijer, N., Kühnel, C., Boskamp, T., Peitgen, H.O.: Robust vessel segmentation. In: Proceedings of SPIE - The International Society for Optical Engineering 2013, pp. 691539–691539-9 (2008)

    Google Scholar 

  3. Fu, L., Kang, Y., Zhu, Z.: Centerline correction of incorrectly segmented coronary arteries in CT angiography. Proc. SPIE 8768, 87683G (2013)

    Article  Google Scholar 

  4. Gharleghi, R., et al.: Automated segmentation of normal and diseased coronary arteries - the ASOCA challenge. Comput. Med. Imaging Graph. 97, 102049 (2022). https://www.sciencedirect.com/science/article/pii/S0895611122000222

  5. Gharleghi, R., et al.: Computed tomography coronary angiogram images, annotations and associated data of normal and diseased arteries (2022). https://arxiv.org/abs/2211.01859

  6. Han, D., Shim, H., Jeon, B.: Automatic coronary artery segmentation using active search for branches and seemingly disconnected vessel segments from coronary CT angiography. PLoS ONE 11(8), e0156837 (2016)

    Article  Google Scholar 

  7. Han, K., et al.: Reconnection of fragmented parts of coronary arteries using local geometric features in X-ray angiography images (2021)

    Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2020)

    Article  Google Scholar 

  9. Li, M., et al.: Deep learning segmentation and reconstruction for CT of chronic total coronary occlusion. Radiology 306, 221393 (2022)

    Article  Google Scholar 

  10. Li, Q., Tian, J.: Partial shape-preserving splines. Comput. Aided Des. 43(4), 394–409 (2011)

    Article  Google Scholar 

  11. M’Hiri, F., Duong, L., Desrosiers, C., Cheriet, M.: VesselWalker: coronary arteries segmentation using random walks and Hessian-based vesselness filter. In: IEEE International Symposium on Biomedical Imaging (2013)

    Google Scholar 

  12. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  13. Mou, L., Chen, L., Cheng, J., Gu, Z., Zhao, Y., Liu, J.: Dense dilated network with probability regularized walk for vessel detection. IEEE Trans. Med. Imaging 39(5), 1392–1403 (2019)

    Article  Google Scholar 

  14. Mou, L., et al.: CS2-Net: deep learning segmentation of curvilinear structures in medical imaging. Elsevier (2021)

    Google Scholar 

  15. Roth, G.A., et al.: Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982 (2020). (15), 77 (2021)

    Google Scholar 

  16. Serruys, P.W., et al.: Coronary computed tomographic angiography for complete assessment of coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78(7), 713–736 (2021)

    Article  Google Scholar 

  17. Shit, S., et al.: clDICE - a novel topology-preserving loss function for tubular structure segmentation. In: Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  18. Wang, Q., et al.: Geometric morphology based irrelevant vessels removal for accurate coronary artery segmentation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 757–760 (2021)

    Google Scholar 

  19. Wolterink, J.M., Leiner, T., Išgum, I.: Graph convolutional networks for coronary artery segmentation in cardiac CT angiography. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 62–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_8

    Chapter  Google Scholar 

  20. Zhang, X., et al.: Progressive deep segmentation of coronary artery via hierarchical topology learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2022)

    Google Scholar 

  21. Zheng, Y., Wang, B., Hong, Q.: UGAN: semi-supervised medical image segmentation using generative adversarial network. In: 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (2022)

    Google Scholar 

  22. Zhou, Z.H., Feng, J.: Deep forest. Natl. Sci. Rev. 6(1), 74–86 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhu, X., Cheng, Z., Wang, S., Chen, X., Lu, G.: Coronary angiography image segmentation based on PSPNet. Comput. Methods Programs Biomed. 200(4), 105897 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of Fujian Province of China (No. 2020J01006), the Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (No. VRLAB2022AC04), National Natural Science Foundation of China (No. 62131015), Beijing Natural Science Foundation (No. Z210013), and ITC-InnoHK Projects at COCHE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingqi Hong or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, Y. et al. (2023). CorSegRec: A Topology-Preserving Scheme for Extracting Fully-Connected Coronary Arteries from CT Angiography. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics