Abstract
Federated learning (FL), training deep models from decentralized data without privacy leakage, has shown great potential in medical image computing recently. However, considering the ubiquitous class imbalance in medical data, FL can exhibit performance degradation, especially for minority classes (e.g. rare diseases). Existing methods towards this problem mainly focus on training a balanced classifier to eliminate class prior bias among classes, but neglect to explore better representation to facilitate classification performance. In this paper, we present a privacy-preserving FL method named FedIIC to combat class imbalance from two perspectives: feature learning and classifier learning. In feature learning, two levels of contrastive learning are designed to extract better class-specific features with imbalanced data in FL. In classifier learning, per-class margins are dynamically set according to real-time difficulty and class priors, which helps the model learn classes equally. Experimental results on publicly-available datasets demonstrate the superior performance of FedIIC in dealing with both real-world and simulated multi-source medical imaging data under class imbalance. Code is available at https://github.com/wnn2000/FedIIC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Argenziano, G., et al.: Interactive atlas of dermoscopy (2000)
Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS, vol. 32 (2019)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)
Chen, Z., Yang, C., Zhu, M., Peng, Z., Yuan, Y.: Personalized retrogress-resilient federated learning toward imbalanced medical data. IEEE Trans. Med. Imaging 41(12), 3663–3674 (2022)
Combalia, M., et al.: BCN20000: dermoscopic lesions in the wild. arXiv:1908.02288 (2019)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: NeurIPS (2020)
Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR, pp. 9268–9277 (2019)
Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)
Duan, M., et al.: Self-balancing federated learning with global imbalanced data in mobile systems. IEEE Trans. Parallel Distrib. Syst. 32(1), 59–71 (2020)
Flanders, A.E., et al.: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiol. Artif. Intel. 2(3), e190211 (2020)
Graf, F., Hofer, C., Niethammer, M., Kwitt, R.: Dissecting supervised constrastive learning. In: ICML, pp. 3821–3830 (2021)
Guo, Q., Qi, Y., Qi, S., Wu, D.: Dual class-aware contrastive federated semi-supervised learning. arXiv:2211.08914 (2022)
Jiang, M., Wang, Z., Dou, Q.: HarmoFL: harmonizing local and global drifts in federated learning on heterogeneous medical images. In: AAAI, pp. 1087–1095 (2022)
Jiang, M., et al.: Dynamic bank learning for semi-supervised federated image diagnosis with class imbalance. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part III, pp. 196–206. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_19
Ju, L., et al.: Flexible sampling for long-tailed skin lesion classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part III, pp. 462–471. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_44
Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: ICLR (2021)
Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)
Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)
Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: CVPR, pp. 10713–10722 (2021)
Li, T., et al.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)
Li, T., et al.: Targeted supervised contrastive learning for long-tailed recognition. In: CVPR, pp. 6918–6928 (2022)
Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: FedBN: federated learning on non-IID features via local batch normalization. In: ICLR (2021)
Li, X.C., Zhan, D.C.: FedRS: federated learning with restricted softmax for label distribution non-IID data. In: KDD, pp. 995–1005 (2021)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: CVPR, pp. 2980–2988 (2017)
Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: CVPR, pp. 1013–1023 (2021)
Liu, Q., Yang, H., Dou, Q., Heng, P.-A.: Federated semi-supervised medical image classification via inter-client relation matching. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III, pp. 325–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_31
Marrakchi, Y., Makansi, O., Brox, T.: Fighting class imbalance with contrastive learning. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III, pp. 466–476. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_44
McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, pp. 1273–1282 (2017)
Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH2-A dermoscopic image database for research and benchmarking. In: EMBC, pp. 5437–5440 (2013)
Menon, A.K., et al.: Long-tail learning via logit adjustment. In: ICLR (2021)
Mu, X., et al.: FedProc: prototypical contrastive federated learning on non-IID data. Future Gener. Comput. Syst. 143, 93–104 (2023). https://doi.org/10.1016/j.future.2023.01.019
Papyan, V., Han, X., Donoho, D.L.: Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl. Acad. Sci. U.S.A. 117(40), 24652–24663 (2020)
Sarkar, D., Narang, A., Rai, S.: Fed-Focal loss for imbalanced data classification in federated learning. In: IJCAI (2020)
Shang, X., Lu, Y., Huang, G., Wang, H.: Federated learning on heterogeneous and long-tailed data via classifier re-training with federated features. In: IJCAI (2022)
Shen, Z., Cervino, J., Hassani, H., Ribeiro, A.: An agnostic approach to federated learning with class imbalance. In: ICLR (2022)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114 (2019)
Tang, K., Tao, M., Qi, J., Liu, Z., Zhang, H.: Invariant feature learning for generalized long-tailed classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIV, pp. 709–726. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20053-3_41
Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)
Wang, L., Xu, S., Wang, X., Zhu, Q.: Addressing class imbalance in federated learning. Proc. AAAI Conf. Artif. Intell. 35(11), 10165–10173 (2021). https://doi.org/10.1609/aaai.v35i11.17219
Yan, Z., Wicaksana, J., Wang, Z., Yang, X., Cheng, K.T.: Variation-aware federated learning with multi-source decentralized medical image data. IEEE J. Biomed. Health Inform. 25(7), 2615–2628 (2020)
Yang, M., Wang, X., Zhu, H., Wang, H., Qian, H.: Federated learning with class imbalance reduction. In: EUSIPCO, pp. 2174–2178 (2021)
Yang, Z., et al.: ProCo: prototype-aware contrastive learning for long-tailed medical image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VIII, pp. 173–182. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_17
Zhang, J., et al.: Federated learning with label distribution skew via logits calibration. In: ICML, pp. 26311–26329 (2022)
Zhao, Y., Chen, W., Tan, X., Huang, K., Zhu, J.: Adaptive logit adjustment loss for long-tailed visual recognition. Proc. AAAI Conf. Artif. Intell. 36(3), 3472–3480 (2022). https://doi.org/10.1609/aaai.v36i3.20258
Zhu, J., Wang, Z., Chen, J., Chen, Y.P.P., Jiang, Y.G.: Balanced contrastive learning for long-tailed visual recognition. In: CVPR, pp. 6908–6917 (2022)
Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under Grants 62202179 and 62271220, in part by the Natural Science Foundation of Hubei Province of China under Grant 2022CFB585, and in part by the Research Grants Council GRF Grant 16203319. The computation is supported by the HPC Platform of HUST.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, N., Yu, L., Yang, X., Cheng, KT., Yan, Z. (2023). FedIIC: Towards Robust Federated Learning for Class-Imbalanced Medical Image Classification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_65
Download citation
DOI: https://doi.org/10.1007/978-3-031-43895-0_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43894-3
Online ISBN: 978-3-031-43895-0
eBook Packages: Computer ScienceComputer Science (R0)