Abstract
The relationship between blood flow and neuronal activity is widely recognized, with blood flow frequently serving as a surrogate for neuronal activity in fMRI studies. At the microscopic level, neuronal activity has been shown to influence blood flow in nearby blood vessels. This study introduces the first predictive model that addresses this issue directly at the explicit neuronal population level. Using in vivo recordings in awake mice, we employ a novel spatiotemporal bimodal transformer architecture to infer current blood flow based on both historical blood flow and ongoing spontaneous neuronal activity. Our findings indicate that incorporating neuronal activity significantly enhances the model’s ability to predict blood flow values. Through analysis of the model’s behavior, we propose hypotheses regarding the largely unexplored nature of the hemodynamic response to neuronal activity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asl, M.E., Koohbanani, N.A., Frangi, A.F., Gooya, A.: Tracking and diameter estimation of retinal vessels using gaussian process and radon transform. J. Med. Imaging 4(3), 034006 (2017)
Buxton, R.B.: Thermodynamic limitations on brain oxygen metabolism: physiological implications. bioRxiv, pp. 2023–01 (2023)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872 (2020)
Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111 (2014)
Drew, P.J.: Vascular and neural basis of the bold signal. Current Opin. Neurobiol. 58, 61–69 (2019). https://doi.org/10.1016/J.CONB.2019.06.004
Drew, P.J., Blinder, P., Cauwenberghs, G., Shih, A.Y., Kleinfeld, D.: Rapid determination of particle velocity from space-time images using the radon transform. J. Comput. Neurosci. 29(1), 5–11 (2010)
Fazlollahi, A., et al.: Efficient machine learning framework for computer-aided detection of cerebral microbleeds using the radon transform. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 113–116. IEEE (2014)
Gao, Y.R., Drew, P.J.: Determination of vessel cross-sectional area by thresholding in radon space. J. Cereb. Blood Flow Metab. 34(7), 1180–1187 (2014)
Golgher, L.: Rapid volumetric imaging of numerous neuro-vascular interactions in awake mammalian brain. Ph.D. thesis, Sagol School of Neuroscience, Tel Aviv University (2022)
Gur, S., Wolf, L., Golgher, L., Blinder, P.: Microvascular dynamics from 4d microscopy using temporal segmentation. In: Pacific Symposium on Biocomputing 2020, pp. 331–342. World Scientific (2019)
Har-Gil, H., et al.: Pysight: plug and play photon counting for fast continuous volumetric intravital microscopy. Optica 5(9), 1104–1112 (2018)
Har-Gil, H., Golgher, L., Kain, D., Blinder, P.: Versatile software and hardware combo enabling photon counting acquisition and real-time display for multiplexing, 2d and continuous 3d two-photon imaging applications. Neurophotonics 9(3), 031920 (2022)
Kim, S.G., Ogawa, S.: Biophysical and physiological origins of blood oxygenation level-dependent FMRI signals. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 32, 1188–206 (2012). https://doi.org/10.1038/jcbfm.2012.23
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)
Klein, G., Kim, Y., et al.: Open-source toolkit for neural machine translation. In: ACL (2017)
Levy, W.B., Calvert, V.G.: Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number. Proc. Natl. Acad. Sci. 118(18), e2008173118 (2021)
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)
Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J., Chang, K.W.: VisualBERT: a simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557 (2019)
Li, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8
Logothetis, N.K.: What we can do and what we cannot do with FMRI. Nature. 453, 869–78 (2008). https://doi.org/10.1038/nature06976
Lu, J., Batra, D., Parikh, D., Lee, S.: VilBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, pp. 13–23 (2019)
Mookiah, M.R.K., et al.: A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 68, 101905 (2020)
Paul, M., Danelljan, M., Van Gool, L., Timofte, R.: Local memory attention for fast video semantic segmentation. arXiv preprint arXiv:2101.01715 (2021)
Pourreza, R., Banaee, T., Pourreza, H., Kakhki, R.D.: A radon transform based approach for extraction of blood vessels in conjunctival images. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 948–956. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88636-5_89
Shazeer, N.: GLU variants improve transformer. arXiv:2002.05202 (2020)
Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490 (2019)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)
Tavakoli, M., Mehdizadeh, A., Pourreza, R., Pourreza, H.R., Banaee, T., Toosi, M.B.: Radon transform technique for linear structures detection: application to vessel detection in fluorescein angiography fundus images. In: 2011 IEEE Nuclear Science Symposium Conference Record, pp. 3051–3056. IEEE (2011)
Uludağ, K., Blinder, P.: Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. NeuroImage. 168, 279–295 (2018). https://doi.org/10.1016/j.neuroimage.2017.02.063
Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: NeurIPS (2017)
Wang, H., Zhu, Y., Adam, H., Yuille, A., Chen, L.C.: Max-deeplab: end-to-end panoptic segmentation with mask transformers. arXiv preprint arXiv:2012.00759 (2020)
Wang, Y., et al.: End-to-end video instance segmentation with transformers. arXiv preprint arXiv:2011.14503 (2020)
Xiong, R., et al.: On layer normalization in the transformer architecture. arXiv:2002.04745 (2020)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2021)
Acknowledgements
The authors thank David Kain for conducting the mouse surgery. This project has received funding from the ISRAEL SCIENCE FOUNDATION (grant No. 2923/20) within the Israel Precision Medicine Partnership program. It was also supported by a grant from the Tel Aviv University Center for AI and Data Science (TAD). It was also supported by the European Research Council, grant No 639416, and the Israel Science Foundation, grant No 2342/21. The contribution of the first author is part of a PhD thesis research conducted at Tel Aviv University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Choukroun, Y., Golgher, L., Blinder, P., Wolf, L. (2023). Reconstructing the Hemodynamic Response Function via a Bimodal Transformer. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-43895-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43894-3
Online ISBN: 978-3-031-43895-0
eBook Packages: Computer ScienceComputer Science (R0)