Abstract
Data scarcity is a significant obstacle hindering the learning of powerful machine learning models in critical healthcare applications. Data-sharing mechanisms among multiple entities (e.g., hospitals) can accelerate model training and yield more accurate predictions. Recently, approaches such as Federated Learning (FL) and Split Learning (SL) have facilitated collaboration without the need to exchange private data. In this work, we propose a framework for medical imaging classification tasks called Federated Split learning of Vision transformer with Block Sampling (FeSViBS). The FeSViBS framework builds upon the existing federated split vision transformer and introduces a block sampling module, which leverages intermediate features extracted by the Vision Transformer (ViT) at the server. This is achieved by sampling features (patch tokens) from an intermediate transformer block and distilling their information content into a pseudo class token before passing them back to the client. These pseudo class tokens serve as an effective feature augmentation strategy and enhances the generalizability of the learned model. We demonstrate the utility of our proposed method compared to other SL and FL approaches on three publicly available medical imaging datasets: HAM1000, BloodMNIST, and Fed-ISIC2019, under both IID and non-IID settings. Code: https://github.com/faresmalik/FeSViBS.
F. Almalik and N. Alkhunaizi—Equal contribution
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
Acevedo, A., Merino, A., Alférez, S., Molina, Á., Boldú, L., Rodellar, J.: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Brief 30, 1–5 (2020)
Ads, O.S., Alfares, M.M., Salem, M.A.M.: Multi-limb split learning for tumor classification on vertically distributed data. In: 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 88–92. IEEE (2021)
Almalik, F., Yaqub, M., Nandakumar, K.: Self-ensembling vision transformer (SEViT) for robust medical image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. LNCS, vol. 13433, pp. 376–386. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_36
Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., Veit, A.: Understanding robustness of transformers for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10231–10241 (2021)
Codella, N.C.F., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). https://doi.org/10.1109/ISBI.2018.8363547
Combalia, M., et al.: Bcn20000: Dermoscopic lesions in the wild. arXiv:1908.02288 (2019)
Dai, Y., Gao, Y., Liu, F.: TransMed: transformers advance multi-modal medical image classification. Diagnostics 11(8), 1384 (2021)
Dayan, I., et al.: Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 27(10), 1735–1743 (2021)
Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018)
Ha, Y.J., Lee, G., Yoo, M., Jung, S., Yoo, S., Kim, J.: Feasibility study of multi-site split learning for privacy-preserving medical systems under data imbalance constraints in COVID-19, x-ray, and cholesterol dataset. Sci. Rep. 12(1), 1534 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, Y., Gupta, S., Song, Z., Li, K., Arora, S.: Evaluating gradient inversion attacks and defenses in federated learning. Adv. Neural. Inf. Process. Syst. 34, 7232–7241 (2021)
Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends ® Mach. Learn. 14(1–2), 1–210 (2021)
Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)
Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (CSUR) 54, 1–41 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)
Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Oh, S., et al.: Differentially private cutmix for split learning with vision transformer. In: First Workshop on Interpolation Regularizers and Beyond at NeurIPS 2022 (2022)
Park, S., Kim, G., Kim, J., Kim, B., Ye, J.: Federated split vision transformer for COVID-19 CXR diagnosis using task-agnostic training. In: 35th Conference on Neural Information Processing Systems, NeurIPS 2021, pp. 24617–24630 (2021)
Poirot, M.G., Vepakomma, P., Chang, K., Kalpathy-Cramer, J., Gupta, R., Raskar, R.: Split learning for collaborative deep learning in healthcare (2019). https://doi.org/10.48550/ARXIV.1912.12115, https://arxiv.org/abs/1912.12115
Shamshad, F., et al.: Transformers in medical imaging: a survey. arXiv preprint arXiv:2201.09873 (2022)
du Terrail, J.O., et al.: FLamby: datasets and benchmarks for cross-silo federated learning in realistic healthcare settings. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022). https://openreview.net/forum?id=GgM5DiAb6A2
Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(11), 180161 (2018). https://doi.org/10.1038/sdata.2018.161
Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health: Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564 (2018)
Wightman, R.: Pytorch image models. https://github.com/rwightman/pytorch-image-models (2019). https://doi.org/10.5281/zenodo.4414861
Yang, J., Shi, R., Ni, B.: MedMNIST classification decathlon: a lightweight AutoML benchmark for medical image analysis. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 191–195 (2021)
Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Almalik, F., Alkhunaizi, N., Almakky, I., Nandakumar, K. (2023). FeSViBS: Federated Split Learning of Vision Transformer with Block Sampling. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-43895-0_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43894-3
Online ISBN: 978-3-031-43895-0
eBook Packages: Computer ScienceComputer Science (R0)