Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

Industry 5.0 envisions a future of manufacturing that realizes personalized production, increased efficiency, and sustainability with a focus on human-centric production. While there have been numerous studies aimed at improving the efficiency of assembly processes, there is a need for smart manufacturing technologies that consider the individual characteristics of workers. This study explores manufacturing shop-floor data collected through wearable devices to analyze the characteristics of processes and workers quantitatively, which have traditionally been evaluated qualitatively. In addition, this study proposes a mathematical method to define the process difficulty and the process proficiency of workers based on data, and presents a heuristic algorithm for worker assignment using a process proficiency matrix of workers by processes. A case study is conducted in a laboratory environment mimicking a home appliance assembly production line in the United States to validate the feasibility of the proposed methodology. This study presents a novel approach to examining human-centric assembly production lines and provides empirical evidence supporting the efficiency of data-driven analysis and improvement techniques for human-centric assembly lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalenogare, L.S., Benitez, G.B., Ayala, N.F., Frank, A.G.: The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394 (2018)

    Article  Google Scholar 

  2. Breque, M., De Nul, L., Petridis, A.: Industry 5.0: towards a sustainable, human- centric and resilient European industry. European Commission, Directorate- General for Research and Innovation, Luxembourg, LU (2021)

    Google Scholar 

  3. Hashemi-Petroodi, S.E., Dolgui, A., Kovalev, S., Kovalyov, M.Y., Thevenin, S.: Workforce reconfiguration strategies in manufacturing systems: a state of the art. Int. J. Prod. Res. 59(22), 6721–6744 (2021)

    Article  Google Scholar 

  4. Boysen, N., Schulze, P., Scholl, A.: Assembly line balancing: What happened in the last fifteen years? Eur. J. Oper. Res. 301(3), 797–814 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Battaïa, O., Dolgui, A.: Hybridizations in line balancing problems: a comprehensive review on new trends and formulations. Int. J. Prod. Econ., 108673 (2022)

    Google Scholar 

  6. Patel, V., Chesmore, A., Legner, C.M., Pandey, S.: Trends in workplace wearable technologies and connected-worker solutions for next-generation occupational safety, health, and productivity. Adv. Intell. Syst. 4(1), 2100099 (2022)

    Article  Google Scholar 

  7. Chambers, R., Gabbett, T.J., Cole, M.H., Beard, A.: The use of wearable microsensors to quantify sport-specific movements. Sports Med. 45, 1065–1081 (2015)

    Article  Google Scholar 

  8. Vignais, N., Miezal, M., Bleser, G., Mura, K., Gorecky, D., Marin, F.: Innovative system for real-time ergonomic feedback in industrial manufacturing. Appl. Ergon. 44(4), 566–574 (2013)

    Article  Google Scholar 

  9. Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P., Tröster, G.: Wearable activity tracking in automobile manufacturing. IEEE Pervasive Comput. 7(2), 42–50 (2008)

    Article  Google Scholar 

  10. Urbina, M., Acosta, T., Lázaro, J., Astarloa, A., Bidarte, U.: Smart sensor: SoC architecture for the Industrial Internet of Things. IEEE Internet Things J. 6(4), 6567–6577 (2019)

    Article  Google Scholar 

  11. Breque, M., De Nul, L., Petridis, A.: Industry 5.0: towards a sustainable. Hum.- Centric Resilient Eur. Ind. (2021)

    Google Scholar 

  12. Lu, Y., et al.: Outlook on human- centric manufacturing towards industry 5.0. J. Manuf. Syst. 62, 612–627 (2022)

    Article  Google Scholar 

  13. Yung, M., Kolus, A., Wells, R., Neumann, W.P.: Examining the fatigue-quality relationship in manufacturing. Appl. Ergon. 82, 102919 (2020)

    Article  Google Scholar 

  14. Ling, S., Guo, D., Rong, Y., Huang, G.Q.: Real-time data-driven synchronous reconfiguration of human-centric smart assembly cell line under graduation intelligent manufacturing system. J. Manuf. Syst. 65, 378–390 (2022)

    Article  Google Scholar 

  15. Katiraee, N., Calzavara, M., Finco, S., Battaïa, O., Battini, D.: Assembly line balancing and worker assignment considering workers’ expertise and perceived physical effort. Int. J. Prod. Res. 61, 1–21 (2022)

    Google Scholar 

  16. Yun, J.P.: Methodology for optimizing worker assignment considering process intensity and worker’s differences. (Master Thesis, Sungkyunkwan University) (2023)

    Google Scholar 

  17. Miqueo, A., Torralba, M., Yagüe-Fabra, J.A.: Lean manual assembly 4.0: a systematic review. Appl. Sci. 10(23), 8555 (2020)

    Article  Google Scholar 

  18. Yunus, M.N.H., Jaafar, M.H., Mohamed, A.S.A., Azraai, N.Z., Hossain, M.S.: Implementation of kinetic and kinematic variables in ergonomic risk assessment using motion capture simulation: a review. Int. J. Environ. Res. Public Health 18(16), 8342 (2021)

    Article  Google Scholar 

  19. Lee, W., Lin, J.H., Howard, N., Bao, S.: Methods for measuring physical workload among commercial cleaners: a scoping review. Int. J. Ind. Ergon. 90, 103319 (2022)

    Article  Google Scholar 

  20. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  21. Narendra, P.M., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26(09), 917–922 (1977)

    Article  MATH  Google Scholar 

  22. Pasadyn, S.R., et al.: Accuracy of commercially available heart rate monitors in athletes: a prospective study. Cardiovasc. Diagn. Ther. 9(4), 379 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the Virtual Engineering Service Platform program (P0022335) and the International Cooperative R&D program. (Project No. 0022929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Do Noh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, C., Yun, J., Kim, GY., Lim, J., Do Noh, S., Kim, Y. (2023). Data-Driven Analysis and Assignment of Manual Assembly Production Lines. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 691. Springer, Cham. https://doi.org/10.1007/978-3-031-43670-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43670-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43669-7

  • Online ISBN: 978-3-031-43670-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics