Abstract
Ontologies based on Description Logics may contain errors, which are usually detected when reasoning produces consequences that follow from the ontology, but do not hold in the modelled application domain. In previous work, we have introduced repair approaches for \(\mathcal{E}\mathcal{L}\) ontologies that are optimal in the sense that they preserve a maximal amount of consequences. In this paper, we will, on the one hand, review these approaches, but with an emphasis on motivation rather than on technical details. On the other hand, we will describe new results that address the problems that optimal repairs may become very large or need not even exist unless strong restrictions on the terminological part of the ontology apply. We will show how one can deal with these problems by introducing concise representations of optimal repairs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
see. e.g., https://bioportal.bioontology.org and https://www.snomed.org/.
- 3.
The paper [16] actually calls repairs “compliant anonymisations” and repair requests “privacy policies” since it considers a situation where consequences are to be removed not because they are incorrect, but since this information should be hidden.
- 4.
References
Baader, F.: Optimal repairs in ontology engineering as pseudo-contractions in belief change. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (SAC 2023), Tallinn, Estonia, 27–31 March 2023, pp. 983–990. Association for Computing Machinery (2023). https://doi.org/10.1145/3555776.3577719
Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in \(\cal{ELH}_{{R}^+}\) w.r.t. cycle-restricted ontologies. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 30–44. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_5
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL} \) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI 2005, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 364–369. Professional Book Center (2005). http://ijcai.org/Proceedings/05/Papers/0372.pdf
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press (2017). https://doi.org/10.1017/9781139025355
Baader, F., Koopmann, P., Kriegel, F.: Optimal repairs in the description logic \(\cal{EL} \) revisited (extended version). LTCS-Report 23-03, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2023). https://doi.org/10.25368/2023.121
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static \(\cal{EL}\) TBoxes. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_18
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal repairs of quantified ABoxes w.r.t. static \(\cal{EL} \) TBoxes (extended version). LTCS-Report 21-01, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2021). https://doi.org/10.25368/2022.64
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair w.r.t. static \(\cal{EL} \) TBoxes: from quantified ABoxes back to ABoxes. In: Groth, P., et al. (eds.) ESWC 2022. LNCS, vol. 13261, pp. 130–146. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_8
Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair w.r.t. static \(\cal{EL} \) TBoxes: from quantified ABoxes back to ABoxes (extended version). LTCS-Report 22-01, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2022). https://doi.org/10.25368/2022.65
Baader, F., Kriegel, F.: Pushing optimal ABox repair from \(\cal{EL} \) towards more expressive Horn-DLs. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, 31 July–5 August 2022, pp. 22–32 (2022). https://doi.org/10.24963/kr.2022/3
Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing for \(\cal{EL} \) instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 323–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_21
Baader, F., Kriegel, F., Nuradiansyah, A.: Error-tolerant reasoning in the description logic \(\cal{EL} \) based on optimal repairs. In: Governatori, G., Turhan, A. (eds.) RuleML+RR 2022. LNCS, vol. 13752, pp. 227–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21541-4_15
Baader, F., Kriegel, F., Nuradiansyah, A.: Treating role assertions as first-class citizens in repair and error-tolerant reasoning. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (SAC 2023), Tallinn, Estonia, 27–31 March 2023, pp. 974–982. Association for Computing Machinery (2023). https://doi.org/10.1145/3555776.3577630
Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in description logics more gentle. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, pp. 319–328. AAAI Press (2018). https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant anonymisations of quantified ABoxes w.r.t. \(\cal{EL} \) policies. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_1
Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\cal{EL} ^+\). In: Cornet, R., Spackman, K.A. (eds.) Proceedings of the Third International Conference on Knowledge Representation in Medicine, Phoenix, Arizona, USA, 31st May–2nd June 2008. CEUR Workshop Proceedings, vol. 410. CEUR-WS.org (2008). http://ceur-ws.org/Vol-410/Paper01.pdf
Brachman, R.J., Fikes, R., Levesque, H.J.: Krypton: a functional approach to knowledge representation. Computer 16(10), 67–73 (1983). https://doi.org/10.1109/MC.1983.1654200
Colmerauer, A.: Prolog and infinite trees. In: Clark, K., Tarnlund, S.A. (eds.) Logic Programming, pp. 231–251. Academic Press, New York (1982)
Cuenca Grau, B., Kostylev, E.V.: Logical foundations of linked data anonymisation. J. Artif. Intell. Res. 64, 253–314 (2019). https://doi.org/10.1613/jair.1.11355
Du, J., Qi, G., Fu, X.: A practical fine-grained approach to resolving incoherent OWL 2 DL terminologies. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management (CIKM 2014), pp. 919–928 (2014). http://doi.acm.org/10.1145/2661829.2662046
Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Reiter’s theory of diagnosis. Artif. Intell. 41(1), 79–88 (1989). https://doi.org/10.1016/0004-3702(89)90079-9
Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_21
Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial procedures to efficient reasoning with \(\cal{EL} \) ontologies. J. Autom. Reason. 53(1), 1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3
Kriegel, F.: Optimal fixed-premise repairs of \(\cal{EL} \) TBoxes. In: Bergmann, R., Malburg, L., Rodermund, S.C., Timm, I.J. (eds.) KI 2022. LNCS, vol. 13404, pp. 115–130. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15791-2_11
Lam, J.S.C., Sleeman, D.H., Pan, J.Z., Vasconcelos, W.W.: A fine-grained approach to resolving unsatisfiable ontologies. J. Data Semant. 10, 62–95 (2008). https://doi.org/10.1007/978-3-540-77688-8_3
Levesque, H.J.: Foundations of a functional approach to knowledge representation. Artif. Intell. 23(2), 155–212 (1984). https://doi.org/10.1016/0004-3702(84)90009-2
Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description logic \(\cal{EL} \). J. Symb. Comput. 45(2), 194–228 (2010). https://doi.org/10.1016/j.jsc.2008.10.007
Ortiz, M., Rudolph, S., Šimkus, M.: Worst-case optimal reasoning for the Horn-DL fragments of OWL 1 and 2. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010 (2010). http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296
Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason. 59(4), 455–482 (2017). https://doi.org/10.1007/s10817-017-9406-8
Parsia, B., Rudolph, S., Hitzler, P., Krötzsch, M., Patel-Schneider, P.: OWL 2 web ontology language primer (second edition). W3C recommendation (2012). http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A., Hagino, T. (eds.) Proceedings of the 14th International Conference on World Wide Web, WWW 2005, Chiba, Japan, 10–14 May 2005, pp. 633–640. ACM (2005). https://doi.org/10.1145/1060745.1060837
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987). https://doi.org/10.1016/0004-3702(87)90062-2. See the erratum [22]
Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reason. 39(3), 317–349 (2007). https://doi.org/10.1007/s10817-007-9076-z
Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.: Repairing ontologies via axiom weakening. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI 2018), The 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI 2018), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 1981–1988. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189
Acknowledgements
This work has been supported by Deutsche Forschungsgemeinschaft (DFG) in projects 430150274 (Repairing Description Logic Ontologies) and 389792660 (TRR 248: Foundations of Perspicuous Software Systems).
Author information
Authors and Affiliations
Contributions
FB and FK contributed equally to the paper. PK ran the experiments and wrote the description of them. He also wrote a first version of the proof of the last proposition in Sect. 5 of [6].
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Baader, F., Koopmann, P., Kriegel, F. (2023). Optimal Repairs in the Description Logic \(\mathcal{E}\mathcal{L}\) Revisited. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)