Nothing Special   »   [go: up one dir, main page]

Skip to main content

Estimating Dynamic Time Warping Distance Between Time Series with Missing Data

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Many techniques for analyzing time series rely on some notion of similarity between two time series, such as Dynamic Time Warping (DTW) distance. But DTW cannot handle missing values, and simple fixes (e.g., dropping missing values, or interpolating) fail when entire intervals are missing, as is often the case with, e.g., temporary sensor or communication failures. There is hardly any research on how to address this problem. In this paper, we propose two hyperparameter-free techniques to estimate the DTW distance between time series with missing values. The first technique, DTW-AROW, significantly decreases the impact of missing values on the DTW distance by modifying the optimization problem in the DTW algorithm. The second technique, DTW-CAI, can further improve upon DTW-AROW by exploiting additional contextual information when that is available (more specifically, more time series from the same population). We show that, on multiple datasets, the proposed techniques outperform existing techniques in estimating pairwise DTW distances as well as in classification and clustering tasks based on these distances. The proposed techniques can enable many machine learning algorithms to more accurately handle time series with missing values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DTW is referred to as a distance, but this should not be interpreted as being a metric, as it does not satisfy the triangular inequality [22] .

  2. 2.

    To apply DTW on multivariate time series, the cost function can be defined as the squared Euclidean distance between the two time samples [32].

  3. 3.

    Instead of saving \(\phi _{j, j'}\), backtracking can also be performed by selecting the direction that minimizes the cumulative cost by complying with the restrictions in (6).

  4. 4.

    There is only a single matched time sample because DTW-AROW matches each missing value with exactly one sample in the other time series (see Sect. 4).

  5. 5.

    The reason for using DTW-AROW instead of the original DTW is the fact that, on rare occasions, the representatives \(\mathcal {Z}\) obtained by DBAM may still contain missing values (see line 8 of Algorithm 2), so as the imputed time series data \(\hat{\mathcal {X}}\).

  6. 6.

    https://github.com/aras-y/DTW_with_missing_values.

References

  1. Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series classification. Data Min. Knowl. Disc. 33(2), 378–412 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Brits: bidirectional recurrent imputation for time series. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  3. Dau, H.A., et al.: Hexagon-ML: the UCR time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  4. deJong, J., et al.: Deep learning for clustering of multivariate clinical patient trajectories with missing values. GigaScience 8(11), 134 (2019)

    Article  Google Scholar 

  5. Fang, C., Wang, C.: Time series data imputation: a survey on deep learning approaches. arXiv preprint arXiv:2011.11347 (2020)

  6. Fox, W.R.: Finding groups in data: an introduction to cluster analysis (1991)

    Google Scholar 

  7. Gemmeke, J.F., Virtanen, T., Hurmalainen, A.: Exemplar-based sparse representations for noise robust automatic speech recognition. IEEE Trans. Audio Speech Lang. Process. 19(7), 2067–2080 (2011)

    Article  Google Scholar 

  8. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  MATH  Google Scholar 

  9. Humpherys, J., Jarvis, T.: Foundations of Applied Mathematics, Volume 2: Algorithms, Approximation, Optimization. SIAM (2020)

    Google Scholar 

  10. Javed, A., Lee, B.S., Rizzo, D.M.: A benchmark study on time series clustering. Mach. Learn. App. 1, 100001 (2020)

    Google Scholar 

  11. Jr., J.L.H., Lehmann, E.L.: rank methods for combination of independent experiments in analysis of variance. Ann. Math. Statist. 33(2), 482–497 (1962)

    Google Scholar 

  12. Kendall, M.G.: A new measure of rank correlation. Biometrika. 30(1–2), 81–93 (1938)

    Article  MATH  Google Scholar 

  13. Lepot, M., Aubin, J.B., Clemens, F.: Interpolation in time series: an introductive overview of existing methods, their performance criteria and uncertainty assessment. Water. 9(10), 796 (2017)

    Article  Google Scholar 

  14. Li, G., Choi, B., Xu, J., Bhowmick, S.S., Chun, K.P., Wong, G.L.H.: Efficient Shapelet discovery for time series classification. IEEE Trans. Knowl. Data Eng. 34(3), 1149–1163 (2022)

    Article  Google Scholar 

  15. Lin, S., Wu, X., Martinez, G., Chawla, N.V.: Filling Missing Values on Wearable-Sensory Time Series Data, pp. 46–54 (2020). https://doi.org/10.1137/1.9781611976236.6

  16. Luo, Y., Cai, X., Zhang, Y., Xu, J., et al.: Multivariate time series imputation with generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  17. Ma, Q., Chen, C., Li, S., Cottrell, G.W.: Learning representations for incomplete time series clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8837–8846 (2021)

    Google Scholar 

  18. Madrid, F., Imani, S., Mercer, R., Zimmerman, Z., Shakibay, N., Keogh, E.: Matrix Profile XX: finding and visualizing time series motifs of all lengths using the matrix profile. In: 2019 IEEE International Conference on Big Knowledge (ICBK), pp. 175–182. IEEE, Beijing, China, November 2019. https://doi.org/10.1109/ICBK.2019.00031, https://ieeexplore.ieee.org/document/8944710/

  19. McKnight, P.E., McKnight, K.M., Sidani, S., Figueredo, A.J.: Missing data: a gentle introduction. Guilford Press (2007)

    Google Scholar 

  20. Meert, W., et al.: wannesm/dtaidistance: v2.3.5, January 2022. https://doi.org/10.5281/zenodo.5901139

  21. Moritz, S., Bartz-Beielstein, T.: Imputets: time series missing value imputation in r. R J. 9(1), 207 (2017)

    Article  Google Scholar 

  22. Müller, M.: Information Retrieval for Music and Motion, vol. 2. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74048-3

    Book  Google Scholar 

  23. Oehmcke, S., Zielinski, O., Kramer, O.: KNN ensembles with penalized DTW for multivariate time series imputation. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2774–2781 (2016)

    Google Scholar 

  24. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert Syst. App. 36(2, Part 2), 3336–3341 (2009). https://doi.org/10.1016/j.eswa.2008.01.039, https://www.sciencedirect.com/science/article/pii/S095741740800081X

  25. Pearson, K.: VII. mathematical contributions to the theory of evolution.–III. regression, heredity, and panmixia. Philos. Trans. R. Soc. London. Ser. A. 187, 253–318 (1896)

    Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44(3), 678–693 (2011)

    Article  MATH  Google Scholar 

  28. Pratama, I., Permanasari, A.E., Ardiyanto, I., Indrayani, R.: A review of missing values handling methods on time-series data. In: 2016 International Conference on Information Technology Systems and Innovation (ICITSI), pp. 1–6 (2016). https://doi.org/10.1109/ICITSI.2016.7858189

  29. Räsänen, T., Kolehmainen, M.: Feature-based clustering for electricity use time series data. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 401–412. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04921-7_41

    Chapter  Google Scholar 

  30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  31. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a "kneedle" in a haystack: Detecting knee points in system behavior. In: 2011 31st International Conference on Distributed Computing Systems Workshops, pp. 166–171 (2011)

    Google Scholar 

  32. Shokoohi-Yekta, M., Hu, B., Jin, H., Wang, J., Keogh, E.: Generalizing DTW to the multi-dimensional case requires an adaptive approach. Data Min. Knowl. Disc. 31, 1–31 (2017)

    Article  MathSciNet  Google Scholar 

  33. Sitaram, D., Dalwani, A., Narang, A., Das, M., Auradkar, P.: A measure of similarity of time series containing missing data using the mahalanobis distance. In: 2015 Second International Conference on Advances in Computing and Communication Engineering, pp. 622–627 (2015). https://doi.org/10.1109/ICACCE.2015.14

  34. Wothke, W.: Longitudinal and multigroup modeling with missing data. In: Modeling Longitudinal and Multilevel Data, pp. 205–224. Psychology Press (2000)

    Google Scholar 

  35. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

  36. Yazdanbakhsh, O., Dick, S.: Multivariate time series classification using dilated convolutional neural network. arXiv preprint arXiv:1905.01697 (2019)

  37. Yoon, J., Jordon, J., van der Schaar, M.: GAIN: missing data imputation using generative adversarial nets. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 5689–5698. PMLR, 10–15 July 2018

    Google Scholar 

Download references

Acknowledgement

This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aras Yurtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yurtman, A., Soenen, J., Meert, W., Blockeel, H. (2023). Estimating Dynamic Time Warping Distance Between Time Series with Missing Data. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14173. Springer, Cham. https://doi.org/10.1007/978-3-031-43424-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43424-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43423-5

  • Online ISBN: 978-3-031-43424-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics