Nothing Special   »   [go: up one dir, main page]

Skip to main content

Specialise to Generalise: The Person Re-identification Case

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Person re-identification (Re-Id) is a beneficial computer vision functionality in security-related applications based on video surveillance systems. It is a challenging cross-camera matching problem, which makes it prone to domain shift issues. To mitigate them, supervised and unsupervised domain adaptation and domain generalisation (DG) methods have been proposed. All such methods tend to favour performance improvements on the target data set at the expense of performance on the source data set(s), on which they generally deteriorate. In this work, instead, we propose an alternative method for DG that does not involve any re-training or fine-tuning of the Re-Id model and thus has no adverse effect on the performance of the source data set. It exploits Generative Adversarial Networks, trained on the source data set only with a one-vs-all mapping that simulates the target data set images, with the aim of transferring the style of the source data set into the target images. Finally, an ad hoc ranking process combines the features extracted from the original and generated images and produces the final ranked list. The proposed method can be used on top of any Re-Id model, making it a possible alternative method against domain shift and also complementary to other approaches. The considered solution is evaluated on a challenging cross-data set scenario on two benchmark data sets and a deep learning baseline for Re-Id. The obtained results demonstrate that the proposed solution improves performance, especially when the Re-Id model is specialised in the source domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainam, J., et al.: Unsupervised domain adaptation for person re-identification with iterative soft clustering. Knowl.-Based Syst. 212, 106644 (2021). https://doi.org/10.1016/j.knosys.2020.106644

    Article  Google Scholar 

  2. Chen, Y., Zhu, X., Gong, S.: Instance-guided context rendering for cross-domain person re-identification. In: ICCV, pp. 232–242 (2019). https://doi.org/10.1109/ICCV.2019.00032

  3. Chong, Y., et al.: Style transfer for unsupervised domain-adaptive person re-identification. Neurocomputing 422, 314–321 (2021). https://doi.org/10.1016/j.neucom.2020.10.005

    Article  Google Scholar 

  4. Delussu, R., Putzu, L., Fumera, G.: Human-in-the-loop cross-domain person re-identification. Expert Syst. Appl. 226, 120216 (2023). https://doi.org/10.1016/j.eswa.2023.120216

    Article  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  6. Ding, G., Zhang, S., Khan, S.H., Tang, Z., Zhang, J., Porikli, F.: Feature affinity-based pseudo labeling for semi-supervised person re-identification. IEEE Trans. Multim. 21(11), 2891–2902 (2019). https://doi.org/10.1109/TMM.2019.2916456

    Article  Google Scholar 

  7. Farenzena, M., et al.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR, pp. 2360–2367 (2010). https://doi.org/10.1109/CVPR.2010.5539926

  8. Genç, A., Ekenel, H.K.: Cross-dataset person re-identification using deep convolutional neural networks: effects of context and domain adaptation. Multimedia Tools Appl. 78(5), 5843–5861 (2018). https://doi.org/10.1007/s11042-018-6409-3

    Article  Google Scholar 

  9. Gou, M., et al.: Dukemtmc4reid: a large-scale multi-camera person re-identification dataset. In: CVPR Workshops, pp. 1425–1434 (2017). https://doi.org/10.1109/CVPRW.2017.185

  10. Han, H., Ma, W., Zhou, M., Guo, Q., Abusorrah, A.: A novel semi-supervised learning approach to pedestrian re-identification. IEEE Internet Things J. 8(4), 3042–3052 (2021). https://doi.org/10.1109/JIOT.2020.3024287

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Khatun, A., Denman, S., Sridharan, S., Fookes, C.: Pose-driven attention-guided image generation for person re-identification. Pattern Recogn. 137, 109246 (2023). https://doi.org/10.1016/j.patcog.2022.109246

    Article  Google Scholar 

  13. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 158–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_12

    Chapter  Google Scholar 

  14. Leng, Q., et al.: A survey of open-world person re-identification. IEEE T-CSVT 30(4), 1092–1108 (2020). https://doi.org/10.1109/TCSVT.2019.2898940

    Article  Google Scholar 

  15. Lin, S., et al.: Multi-domain adversarial feature generalization for person re-identification. IEEE T-IP 30, 1596–1607 (2021). https://doi.org/10.1109/TIP.2020.3046864

    Article  Google Scholar 

  16. Qi, L., Liu, J., Wang, L., Shi, Y., Geng, X.: Unsupervised generalizable multi-source person re-identification: a domain-specific adaptive framework. Pattern Recogn. 140, 109546 (2023)

    Article  Google Scholar 

  17. S, S.R., Prasad, M.V.N.K., Balakrishnan, R.: Generative segment-pose representation based augmentation (GSRA) for unsupervised person re-identification. Image Vis. Comput. 131, 104632 (2023). https://doi.org/10.1016/j.imavis.2023.104632

  18. Song, L., et al.: Unsupervised domain adaptive re-identification: theory and practice. Patt. Rec. 102, 107173 (2020). https://doi.org/10.1016/j.patcog.2019.107173

    Article  Google Scholar 

  19. Tian, J., Teng, Z., Zhang, B., Wang, Y., Fan, J.: Imitating targets from all sides: an unsupervised transfer learning method for person re-identification. Int. J. Mach. Learn. Cybern. 12(8), 2281–2295 (2021). https://doi.org/10.1007/s13042-021-01308-6

    Article  Google Scholar 

  20. Verma, A., Subramanyam, A.V., Wang, Z., Satoh, S., Shah, R.R.: Unsupervised domain adaptation for person re-identification via individual-preserving and environmental-switching cyclic generation. IEEE Trans. Multim. 25, 364–377 (2023). https://doi.org/10.1109/TMM.2021.3126404

    Article  Google Scholar 

  21. Wang, M., Chen, J., Liu, H.: A novel multi-scale architecture driven by decoupled semantic attention transfer for person image generation. Comput. Graph. (2023)

    Google Scholar 

  22. Wang, W., Liao, S., Zhao, F., Kang, C., Shao, L.: Domainmix: learning generalizable person re-identification without human annotations. In: BMVC, p. 355 (2021)

    Google Scholar 

  23. Wang, Y., Liao, S., Shao, L.: Surpassing real-world source training data: random 3D characters for generalizable person re-identification. In: ACM MM, pp. 3422–3430 (2020). https://doi.org/10.1145/3394171.3413815

  24. Wei, L., et al.: Person transfer GAN to bridge domain gap for person re-identification. In: CVPR, pp. 79–88 (2018). https://doi.org/10.1109/CVPR.2018.00016

  25. Ye, M., et al.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. PAMI 44(06), 2872–2893 (2022). https://doi.org/10.1109/TPAMI.2021.3054775

    Article  Google Scholar 

  26. Yu, H., Wu, A., Zheng, W.: Cross-view asymmetric metric learning for unsupervised person re-identification. In: ICCV, pp. 994–1002 (2017). https://doi.org/10.1109/ICCV.2017.113

  27. Zhang, C., et al.: Improving domain-adaptive person re-identification by dual-alignment learning with camera-aware image generation. IEEE T-CSVT 1, 4334–4346 (2020). https://doi.org/10.1109/TCSVT.2020.3047095

    Article  Google Scholar 

  28. Zhang, L., Jiang, N., Diao, Q., Zhou, Z., Wu, W.: Person re-identification with pose variation aware data augmentation. Neural Comput. Appl. 34(14), 11817–11830 (2022). https://doi.org/10.1007/s00521-022-07071-1

    Article  Google Scholar 

  29. Zhang, S., Hu, H.: Unsupervised person re-identification using unified domanial learning. Neural Process. Lett. 1–19 (2023)

    Google Scholar 

  30. Zheng, L., et al.: Scalable person re-identification: a benchmark. In: ICCV, pp. 1116–1124 (2015). https://doi.org/10.1109/ICCV.2015.133

  31. Zhong, Z., et al.: CamStyle: a novel data augmentation method for person re-identification. IEEE T-IP 28(3), 1176–1190 (2019). https://doi.org/10.1109/TIP.2018.2874313

    Article  MathSciNet  Google Scholar 

  32. Zhou, K., et al.: Learning generalisable omni-scale representations for person re-identification. IEEE T-PAMI 1, 1–1 (2019). https://doi.org/10.1109/TPAMI.2021.3069237

    Article  Google Scholar 

  33. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE T-PAMI 45(4), 4396–4415 (2023). https://doi.org/10.1109/TPAMI.2022.3195549

    Article  Google Scholar 

  34. Zhou, S., Wang, Y., Zhang, F., Wu, J.: Cross-view similarity exploration for unsupervised cross-domain person re-identification. Neural Comput. Appl. 33(9), 4001–4011 (2021). https://doi.org/10.1007/s00521-020-05566-3

    Article  Google Scholar 

  35. Zou, Y., Yang, X., Yu, Z., Kumar, B.V.K.V., Kautz, J.: Joint disentangling and adaptation for cross-domain person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 87–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_6

    Chapter  Google Scholar 

Download references

Acknowledgements

Supported by the projects: “Law Enforcement agencies human factor methods and Toolkit for the Security and protection of CROWDs in mass gatherings” (LETSCROWD), EU Horizon 2020 programme, grant agreement No. 740466; “IMaging MAnagement Guidelines and Informatics Network for law enforcement Agencies” (IMMAGINA), European Space Agency, ARTES Integrated Applications Promotion Programme, contract No. 4000133110/20/NL/AF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Putzu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Putzu, L., Loddo, A., Delussu, R., Fumera, G. (2023). Specialise to Generalise: The Person Re-identification Case. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics