Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing PFI Prediction with GDS-MIL: A Graph-Based Dual Stream MIL Approach

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14233))

Included in the following conference series:

Abstract

Whole-Slide Images (WSI) are emerging as a promising resource for studying biological tissues, demonstrating a great potential in aiding cancer diagnosis and improving patient treatment. However, the manual pixel-level annotation of WSIs is extremely time-consuming and practically unfeasible in real-world scenarios. Multi-Instance Learning (MIL) have gained attention as a weakly supervised approach able to address lack of annotation tasks. MIL models aggregate patches (e.g., cropping of a WSI) into bag-level representations (e.g., WSI label), but neglect spatial information of the WSIs, crucial for histological analysis. In the High-Grade Serous Ovarian Cancer (HGSOC) context, spatial information is essential to predict a prognosis indicator (the Platinum-Free Interval, PFI) from WSIs. Such a prediction would bring highly valuable insights both for patient treatment and prognosis of chemotherapy resistance. Indeed, NeoAdjuvant ChemoTherapy (NACT) induces changes in tumor tissue morphology and composition, making the prediction of PFI from WSIs extremely challenging. In this paper, we propose GDS-MIL, a method that integrates a state-of-the-art MIL model with a Graph ATtention layer (GAT in short) to inject a local context into each instance before MIL aggregation. Our approach achieves a significant improvement in accuracy on the “Ome18” PFI dataset. In summary, this paper presents a novel solution for enhancing PFI prediction in HGSOC, with the potential of significantly improving treatment decisions and patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(x^{ins}_i\) represents a patch extracted from the \(X^{bag}\), i.e., the entire WSI.

  2. 2.

    A fixed threshold is applied on the HSV (Hue Saturation Brightness) color space of the WSI thumbnail and later propagated to \(5\times \) and \(20\times \) resolutions.

References

  1. Allegretti, S., Bolelli, F., Cancilla, M., Pollastri, F., Canalini, L., Grana, C.: How does connected components labeling with decision trees perform on GPUs? In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11678, pp. 39–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29888-3_4

    Chapter  Google Scholar 

  2. Bontempo, G., Porrello, A., Bolelli, F., Calderara, S., Ficarra, E.: DAS-MIL: Distilling Across Scales for MIL classification of histological WSIs. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 (2023)

    Google Scholar 

  3. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? In: International Conference on Learning Representations (2022)

    Google Scholar 

  4. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9650–9660 (2021)

    Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  6. Evans, A.J., et al.: US food and drug administration approval of whole slide imaging for primary diagnosis: a key milestone is reached and new questions are raised. Arch. Pathol. Lab. Med. 142(11), 1383–1387 (2018)

    Article  Google Scholar 

  7. Fatemi, M., et al.: Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: a pilot study. J. Pathol. Inf. 14, 100308 (2023)

    Article  Google Scholar 

  8. Feng, J., Zhou, Z.H.: Deep MIML network. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 1884–1890. AAAI Press (2017)

    Google Scholar 

  9. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Proceedings of the 35th International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  10. Kehoe, S., et al.: Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial. Lanchet 386(9990), 249–257 (2015)

    Article  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations. ICLR (2017)

    Google Scholar 

  12. Kumar, N., Gupta, R., Gupta, S.: Whole slide imaging (WSI) in pathology: current perspectives and future directions. J. Digit. Imaging 33(4), 1034–1040 (2020)

    Article  Google Scholar 

  13. Landi, F., Baraldi, L., Corsini, M., Cucchiara, R.: Embodied vision-and-language navigation with dynamic convolutional filters. In: Proceedings of the British Machine Vision Conference (2019)

    Google Scholar 

  14. Laury, A.R., Blom, S., Ropponen, T., Virtanen, A., Carpén, O.M.: Artificial intelligence-based image analysis can predict outcome in high-grade serous carcinoma via histology alone. Sci. Rep. 11(1), 19165 (2021)

    Article  Google Scholar 

  15. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14318–14328 (2021)

    Google Scholar 

  16. Lovino, M., Ciaburri, M.S., Urgese, G., Di Cataldo, S., Ficarra, E.: DEEPrior: a deep learning tool for the prioritization of gene fusions. Bioinformatics 36(10), 3248–3250 (2020)

    Article  Google Scholar 

  17. Lu, M.Y., Chen, R.J., Wang, J., Dillon, D., Mahmood, F.: Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding. arXiv preprint: arXiv:1910.10825 (2019)

  18. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  19. Martina, J.D., Simmons, C., Jukic, D.M.: High-definition hematoxylin and eosin staining in a transition to digital pathology. J. Pathol. Inf. 2(1), 45 (2011)

    Article  Google Scholar 

  20. Meza-Perez, S., Randall, T.D.: Immunological functions of the Omentum. Trends Immunol. 38(7), 526–536 (2017)

    Article  Google Scholar 

  21. Morelli, D., Fincato, M., Cornia, M., Landi, F., Cesari, F., Cucchiara, R.: Dress code: high-resolution multi-category virtual try-on. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2022)

    Google Scholar 

  22. Nikolaidi, A., Fountzilas, E., Fostira, F., Psyrri, A., Gogas, H., Papadimitriou, C.: Neoadjuvant treatment in ovarian cancer: new perspectives, new challenges. Front. Oncol., 3758 (2022)

    Google Scholar 

  23. Panariello, A., Porrello, A., Calderara, S., Cucchiara, R.: Consistency-based self-supervised learning for temporal anomaly localization. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. Lecture Notes in Computer Science, vol. 13805, pp. 338–349. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25072-9_22

    Chapter  Google Scholar 

  24. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1713–1721 (2015)

    Google Scholar 

  25. Ponzio, F., Urgese, G., Ficarra, E., Di Cataldo, S.: Dealing with lack of training data for convolutional neural networks: the case of digital pathology. Electronics 8(3), 256 (2019)

    Article  Google Scholar 

  26. Porrello, A., Abati, D., Calderara, S., Cucchiara, R.: Classifying signals on irregular domains via convolutional cluster pooling. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1388–1397 (2019)

    Google Scholar 

  27. Pujade-Lauraine, E., Combe, P.: Recurrent ovarian cancer. Ann. Oncol. 27, i63–i65 (2016)

    Article  Google Scholar 

  28. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 2136–2147 (2021)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR 2015) (2015)

    Google Scholar 

  30. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-Score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_114

    Chapter  Google Scholar 

  31. Tomei, M., Baraldi, L., Calderara, S., Bronzin, S., Cucchiara, R.: RMS-Net: regression and masking for soccer event spotting. In: 25th International Conference on Pattern Recognition (ICPR), pp. 7699–7706. IEEE (2021)

    Google Scholar 

  32. Tourniaire, P., Ilie, M., Hofman, P., Ayache, N., Delingette, H.: Attention-based multiple instance learning with mixed supervision on the camelyon16 dataset. In: Proceedings of the MICCAI Workshop on Computational Pathology, pp. 216–226. PMLR (2021)

    Google Scholar 

  33. Velickovic, P., et al.: Graph attention networks. Stat 1050(20), 10–48550 (2017)

    Google Scholar 

  34. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  35. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Article  Google Scholar 

  36. Yu, K.H., et al.: Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks. BMC Med. 18(1), 1–14 (2020)

    Article  Google Scholar 

  37. Zhang, H., et al.: DTFD-MIL: double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18802–18812 (2022)

    Google Scholar 

  38. Zhang, J., Hu, J.: Image segmentation based on 2D Otsu method with histogram analysis. In: International Conference on Computer Science and Software Engineering, vol. 6, pp. 105–108. IEEE (2008)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from DECIDER, the European Union’s Horizon 2020 research and innovation programme under GA No. 965193, and from the Department of Engineering “Enzo Ferrari” of the University of Modena through the FARD-2022 (Fondo di Ateneo per la Ricerca 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bolelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bontempo, G., Bartolini, N., Lovino, M., Bolelli, F., Virtanen, A., Ficarra, E. (2023). Enhancing PFI Prediction with GDS-MIL: A Graph-Based Dual Stream MIL Approach. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics