Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Learnable EVC Intra Predictor Using Masked Convolutions

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

The Enhanced Video Coding (EVC) workgroup of the Moving Picture, Audio and Data Coding by Artificial Intelligence (MPAI) organization aims at enhancing traditional video codecs by improving or replacing traditional encoding tools with AI-based counterparts. In this work, we explore enhancing MPEG Essential Video Coding (EVC) intra prediction with a learnable predictor: we recast the problem as a hole inpainting task that we tackle via masked convolutions. Our experiments in standard test conditions show BD-rate reductions in excess of 6% over the EVC baseline profile reference with some sequences in excess of 12%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://mpai.community/standards/mpai-evc/about-mpai-evc/.

References

  1. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: International Conference on Learning Representations (ICLR), Toulon, France (2017)

    Google Scholar 

  2. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: International Conference on Learning Representations (ICLR), Vancouver, CA (2018)

    Google Scholar 

  3. Choi, K., Chen, J., Rusanovskyy, D., Choi, K.P., Jang, E.S.: An overview of the MPEG-5 essential video coding standard [standards in a nutshell]. IEEE Signal Process. Mag. 37(3), 160–167 (2020)

    Article  Google Scholar 

  4. CISCO: Global 2021 forecast highlights (2021). https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf

  5. Dumas, T., Galpin, F., Bordes, P.: Iterative training of neural networks for intra prediction. IEEE Trans. Image Process. 30, 697–711 (2020)

    Article  Google Scholar 

  6. Dumas, T., Roumy, A., Guillemot, C.: Context-adaptive neural network-based prediction for image compression. IEEE Trans. Image Process. 29, 679–693 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodfellow, I., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Helle, P., et al.: Intra picture prediction for video coding with neural networks. In: 2019 Data Compression Conference (DCC), pp. 448–457. IEEE (2019)

    Google Scholar 

  9. Hu, Y., Yang, W., Li, M., Liu, J.: Progressive spatial recurrent neural network for intra prediction. IEEE Trans. Multimedia 21(12), 3024–3037 (2019)

    Article  Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (ICLR), Banff, CA (2014)

    Google Scholar 

  11. Li, W., Lin, Z., Zhou, K., Qi, L., Wang, Y., Jia, J.: Mat: Mask-aware transformer for large hole image inpainting. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10748–10758 (2022). https://doi.org/10.1109/CVPR52688.2022.01049

  12. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  13. MPEG: JVET common test conditions and evaluation procedures for neural network-based video coding technology. In: Output Document of JVET (2023)

    Google Scholar 

  14. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting (2016)

    Google Scholar 

  15. Rippel, O., Bourdev, L.: Real-time adaptive image compression. arXiv preprint: arXiv:1705.05823 (2017)

  16. Samuelsson, J., Choi, K., Chen, J., Rusanovskyy, D.: MPEG-5 EVC. In: SMPTE 2019, pp. 1–11. SMPTE (2019)

    Google Scholar 

  17. Schwarz, K., Wieschollek, P., Lensch, H.P.: Will people like your image? Learning the aesthetic space. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2048–2057. IEEE (2018)

    Google Scholar 

  18. Sze, V., Budagavi, M., Sullivan, G.J.: High Efficiency Video Coding (HEVC). Integrated Circuit and Systems, Algorithms and Architectures, vol. 39, p. 40. Springer, Cham (2014)

    Google Scholar 

  19. Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5435–5443, Honolulu, Hawaii, USA (2017)

    Google Scholar 

  20. Valenzise, G., Purica, A., Hulusic, V., Cagnazzo, M.: Quality assessment of deep-learning-based image compression. In: Multimedia Signal Processing, Vancouver, Canada (2018). https://www.hal.archives-ouvertes.fr/hal-01819588

  21. Wan, Z., Zhang, J., Chen, D., Liao, J.: High-fidelity pluralistic image completion with transformers. CoRR abs/2103.14031 (2021). arxiv:2103.14031

  22. Wang, L., Fiandrotti, A., Purica, A., Valenzise, G., Cagnazzo, M.: Enhancing HEVC spatial prediction by context-based learning. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4035–4039. IEEE (2019)

    Google Scholar 

  23. Yu, Y., et al.: Diverse image inpainting with bidirectional and autoregressive transformers. CoRR abs/2104.12335 (2021). arxiv.org/abs/2104.12335

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Spadaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spadaro, G., Iacoviello, R., Mosca, A., Valenzise, G., Fiandrotti, A. (2023). A Learnable EVC Intra Predictor Using Masked Convolutions. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics